CATALYTIC ACTIVITY OF Cu/AC CATALYST ON DIRECT SYNTHESIS OF 1,1 DIBUTOXYBUTANE FROM 1-BUTANOL

Authors

DOI:

https://doi.org/10.37525/mz/2024-1/613

Keywords:

1,1-dibutoxybutane, Cu/AC catalyst, dry impregnation, catalytic activity

Abstract

This study was conducted to investigate the catalytic activity of the Cu/AC catalyst in the direct synthesis of 1,1-dibutoxybutane (DBB) from 1-butanol. The Cu/AC catalyst was prepared through dry impregnation and characterized using TG/DTA, XRD, and SEM-EDS. The catalyst was placed in a continuous downflow quart tube reactor, and 1-butanol was pumped into a preheated reactor under an N₂ atmosphere at a specific temperature, contact time, reaction time, and 1-butanol concentration. The product was condensed and analyzed using FTIR, ¹H, ¹H-¹H COSY, ¹³C NMR, GC-MS, and GC. The results showed that the catalyst preparation procedure successfully impregnated Cu on the AC surface, and the resulting catalyst had catalytic activity in the direct synthesis of DBB from 1-butanol. As the temperature rises, the 1-butanol conversion and DBB selectivity increase. Longer contact and reaction times could lead to higher DBB concentrations. The concentration of 1-butanol in the feed affected the DBB concentration in the finished product. Higher conversion of 1-butanol is possible at a certain concentration. The addition of magnesium to the Cu/AC catalyst improved DBB formation. Although magnesium promoted butanal formation, DBB formation was more favorable on the Cu surface.

References

Agirre, I., Barrio, V. L., Güemez, B., Cambra, J. F., & Arias, P. L. (2011). Catalytic reactive distillation process development for 1,1 diethoxy butane production from renewable sources. Bioresource Technology, 102(2), 1289–1297. doi:10.1016/j.biortech.2010.08.064

Agirre, I., Güemez, M. B., Ugarte, A., Requies, J., Barrio, V. L., Cambra, J. F., & Arias, P. L. (2013). Glycerol acetals as diesel additives: Kinetic study of the reaction between glycerol and acetaldehyde. Fuel Processing Technology, 116, 182–188. doi:10.1016/j.fuproc.2013.05.014

Antoniammal, P., & Arivuoli, D. (2012). Size and Shape Dependence on Melting Temperature of Gallium Nitride Nanoparticles. Journal of Nanomaterials, 2012, 1–11. doi:10.1155/2012/415797

Catalyst for the selective terminal oxidation of alkanes. (2011). Focus on Catalysts, 2011(2), 7–8. doi:10.1016/s1351-4180(11)70050-2

De Micco, G., Bohé, A. E., & Pasquevich, D. M. (2007). A thermogravimetric study of copper chlorination. Journal of Alloys and Compounds, 437(1–2), 351–359. doi:10.1016/j.jallcom.2006.08.003

Dunn, A. S. (1994). Introduction to physical polymer science (2nd edition). By L. H. Sperling, New York, 1992 John Wiley & Sons Inc. John Wiley & Sons Inc., New York, 1992. pp. xxvii + 594, price £55.00. ISBN 0‐471‐53035‐2. Polymer International, 33(2), 233–233. doi:10.1002/pi.1994.210330214

Frusteri, F., Spadaro, L., Beatrice, C., & Guido, C. (2007). Oxygenated additives production for diesel engine emission improvement. Chemical Engineering Journal, 134(1–3), 239–245. doi:10.1016/j.cej.2007.03.042

Graça, N. S., Pais, L. S., Silva, V. M. T. M., & Rodrigues, A. E. (2010). Oxygenated Biofuels from Butanol for Diesel Blends: Synthesis of the Acetal 1,1-Dibutoxyethane Catalyzed by Amberlyst-15 Ion-Exchange Resin. Industrial & Engineering Chemistry Research, 49(15), 6763–6771. doi:10.1021/ie901635j

Green, S. K. (2004). ELSI and bioterrorism countermeasures? Nature Biotechnology, 22(6), 656–656. doi:10.1038/nbt0604-656a

Güemez, M. B., Requies, J., Agirre, I., Arias, P. L., Barrio, V. L., & Cambra, J. F. (2013). Acetalization reaction between glycerol and n-butyraldehyde using an acidic ion exchange resin. Kinetic modelling. Chemical Engineering Journal, 228, 300–307. doi:10.1016/j.cej.2013.04.107

Hartati, H., Santoso, M., Triwahyono, S., & Prasetyoko, D. (2013). Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 8(1), 14–33. doi:10.9767/bcrec.8.1.4394.14-33

Hong, X., McGiveron, O., Kolah, A. K., Orjuela, A., Peereboom, L., Lira, C. T., & Miller, D. J. (2013). Reaction kinetics of glycerol acetal formation via transacetalization with 1,1-diethoxyethane. Chemical Engineering Journal, 222, 374–381. doi:10.1016/j.cej.2013.02.023

Icha, A. (2011). Book Review. Pure and Applied Geophysics, 169(7), 1325–1327. doi:10.1007/s00024-011-0442-8

Kamizono, T., Ohtsuka, A., Hashimoto, F., & Hayashi, K. (2013). Dibutoxybutane Suppresses Protein Degradation and Promotes Growth in Cultured Chicken Muscle Cells. The Journal of Poultry Science, 50(1), 37–43. doi:10.2141/jpsa.0120063

Kinnel, R. B. (2005). The Systematic Identification of Organic Compounds, 8th Edition By R. Shriner, C. Hermann, T. Morrill, D. Curtin, and R. Fuson. John Wiley & Sons, Inc., Hoboken, NJ. 2004. ix +723 pp. 21 × 32 cm. $102.95. ISBN 0-471-21503-1. Journal of Natural Products, 68(2), 309–310. doi:10.1021/np058223w

Kolasinski, K. W. (2012). Surface Science. doi:10.1002/9781119941798

Kotai, L., Szepvolgyi, J., Szilagyi, M., Zhibin, L., Baiquan, C., Sharma, V., & K., P. (2013, March 20). Biobutanol from Renewable Agricultural and Lignocellulose Resources and Its Perspectives as Alternative of Liquid Fuels. Liquid, Gaseous and Solid Biofuels - Conversion Techniques. doi:10.5772/52379

Nanda, M. R., Yuan, Z., Qin, W., Ghaziaskar, H. S., Poirier, M.-A., & Xu, C. (charles). (2014). A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening. Applied Energy, 123, 75–81. doi:10.1016/j.apenergy.2014.02.055

Niemisto, J., Saavalainen, P., Pongracz, E., & Keiski, R. L. (2013). Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks. Journal of Sustainable Development of Energy, Water and Environment Systems, 1(2), 58–77. doi:10.13044/j.sdewes.2013.01.0005

Nørskov, J. K., Studt, F., Abild‐Pedersen, F., & Bligaard, T. (2014). Fundamental Concepts in Heterogeneous Catalysis. doi:10.1002/9781118892114

Othman, M. F., Abdullah, H., Sulaiman, N. A., & Hassan, M. Y. (2013). Performance evaluation of an actual building air-conditioning system. IOP Conference Series: Materials Science and Engineering, 50, 012051. doi:10.1088/1757-899x/50/1/012051

Part B Thermal decompositions of selected ionic solids. (1999). Thermal Decomposition of Ionic Solids, p. 215. doi:10.1016/s0167-6881(99)80008-1

Rahaman, M., Graça, N. S., Pereira, C. S. M., & Rodrigues, A. E. (2015). Thermodynamic and kinetic studies for synthesis of the acetal (1,1-diethoxybutane) catalyzed by Amberlyst 47 ion-exchange resin. Chemical Engineering Journal, 264, 258–267. doi:10.1016/j.cej.2014.11.077

Silva, V. M. T. M., & Rodrigues, A. E. (2006). Kinetic studies in a batch reactor using ion exchange resin catalysts for oxygenates production: Role of mass transfer mechanisms. Chemical Engineering Science, 61(2), 316–331. doi:10.1016/j.ces.2005.07.017

Silva, V. M. T. M., Pereira, C. S. M., Rodrigues, A. E., Verevkin, S. P., Emel’yanenko, V. N., Garist, I. V., & Gmehling, J. (2012). Experimental and Theoretical Study of Chemical Equilibria in the Reactive Systems of Acetals Synthesis. Industrial & Engineering Chemistry Research, 51(39), 12723–12729. doi:10.1021/ie301484y

Szymański, G. S., Rychlicki, G., & Terzyk, A. P. (1994). Catalytic conversion of ethanol on carbon catalysts. Carbon, 32(2), 265–271. doi:10.1016/0008-6223(94)90189-9

Viswanathan, B., Neel, P. I., & Varadarajan, T. K. (2009). Development of Carbon Materials for Energy and Environmental Applications. Catalysis Surveys from Asia, 13(3), 164–183. doi:10.1007/s10563-009-9074-8

Wang, Z., Marin, G., Naterer, G. F., & Gabriel, K. S. (2014). Thermodynamics and kinetics of the thermal decomposition of cupric chloride in its hydrolysis reaction. Journal of Thermal Analysis and Calorimetry, 119(2), 815–823. doi:10.1007/s10973-014-3929-6

Yanowitz, J., Ratcliff, M., McCormick, R., Taylor, J., & Murphy, M. (2014). Compendium of Experimental Cetane Numbers. doi:10.2172/1150177

Downloads

Published

2024-08-26

How to Cite

Yoeswono , Y. ., & Umam, M. F. (2024). CATALYTIC ACTIVITY OF Cu/AC CATALYST ON DIRECT SYNTHESIS OF 1,1 DIBUTOXYBUTANE FROM 1-BUTANOL. Jurnal Nasional Pengelolaan Energi MigasZoom, 6(1), 47–58. https://doi.org/10.37525/mz/2024-1/613