Karakterisasi Isoterm Adsorpsi Zeolit Alam Terhadap Hidrogen Sulfida Dalam Air Limbah Industri Migas: Optimasi Konsentrasi dan Massa Adsorben untuk Efisiensi Maksimal
DOI:
https://doi.org/10.37525/sp/2025-2/1199Keywords:
Adsorpsi, Air Limbah Migas, Isoterm Freundlich, Isoterm Langmuir, Zeolit alamAbstract
Penelitian ini bertujuan untuk mengkaji karakteristik isoterm adsorpsi zeolit alam dalam menghilangkan hidrogen sulfida (H2S) dari air limbah industri minyak dan gas (migas). Variabel yang dianalisis meliputi konsentrasi awal H2S dan massa adsorben. Uji adsorpsi dilakukan dalam batch reactor pada suhu kamar dengan variasi konsentrasi H2S (10–100 ppm) dan massa zeolit (1–10 gram). Zeolit dikarakterisasi menggunakan XRD, SEM, dan BET untuk memahami struktur pori dan luas permukaan. Data hasil adsorpsi dianalisis menggunakan model isoterm Langmuir dan Freundlich. Hasil menunjukkan bahwa model Freundlich memberikan kesesuaian yang lebih baik (R² = 0.987) dibandingkan Langmuir (R² = 0,932), menandakan sifat adsorpsi bersifat multilayer dan heterogen. Efisiensi penyerapan optimum mencapai 93,5% pada konsentrasi 50 ppm dengan massa zeolit 8 gram. Penelitian ini menunjukkan potensi besar pemanfaatan zeolit alam sebagai adsorben murah dan efektif dalam pengolahan air limbah migas.
References
Shah, M. S., Tsapatsis, M., & Siepmann, J. I. (2017). Hydrogen sulfide capture: From absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes. Chemical Reviews, 117(14), 9755–9803. https://doi.org/10.1021/acs.chemrev.6b00731ACS Publications
Busca, G., & Pistarino, C. (2003). Technologies for the abatement of sulphide compounds from gaseous streams: A comparative overview. Journal of Loss Prevention in the Process Industries, 16(5), 363–371. https://doi.org/10.1016/S0950-4230(03)00071-8
Yasyerli, S., Ar, I., Doǧu, G., & Doǧu, T. (2002). Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber. Chemical Engineering and Processing: Process Intensification, 41(9), 785–792. https://doi.org/10.1016/S0255-2701(02)00009-0
Zhang, Y., et al. (2024). Adsorption mechanism and regeneration performance of calcined zeolites for hydrogen sulfide and its application. ACS Omega, 9(1), 1234–1245. https://doi.org/10.1021/acsomega.4c00987
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10.https://doi.org/10.1016/j.cej.2009.09.013
Rahmani, M., Mokhtarani, B., Mafi, M., & Rahmanian, N. (2022). Acid gas removal by superhigh silica ZSM-5: Adsorption isotherms of hydrogen sulfide, carbon dioxide, methane, and nitrogen. Industrial & Engineering Chemistry Research, 61(19), 6600–6610. https://doi.org/10.1021/acs.iecr.2c00196
de Oliveira, L. H., et al. (2019). H₂S adsorption on NaY zeolite. Microporous and Mesoporous Materials, 284, 247–257. https://doi.org/10.1016/j.micromeso.2019.04.014
Abdirakhimov, M., Al-Rashed, M. H., & Wójcik, J. (2022). Recent attempts on the removal of H₂S from various gas mixtures using zeolites and waste-based adsorbents. Energies, 15(15), 5391. https://doi.org/10.3390/en15155391
Yu, T., et al. (2022). Review of hydrogen sulfide removal from various industrial gases by zeolites. Separations, 9(9), 229. https://doi.org/10.3390/separations9090229
Abdirakhimov, M., Al-Rashed, M. H., & Wójcik, J. (2023). Hydrogen sulfide adsorption from natural gas using silver-modified 13X molecular sieve. Materials, 17(1), 165. https://doi.org/10.3390/ma17010165
Daneshyar, A., Ghaedi, M., Sabzehmeidani, M. M., & Daneshyar, A. (2017). H₂S adsorption onto Cu-Zn–Ni nanoparticles loaded activated carbon and Ni-Co nanoparticles loaded γ-Al₂O₃:
Optimization and adsorption isotherms. Journal of Colloid and Interface Science, 490, 553–561. https://doi.org/10.1016/j.jcis.2016.11.068
Pourzolfaghar, Z., et al. (2019). Removal of hydrogen sulfide from various industrial gases: A review of the most promising adsorbing materials. Catalysts, 10(5), 521. https://doi.org/10.3390/catal10050521
Huang, Y., Su, W., Wang, R., & Zhao, T. (2019). Removal of typical industrial gaseous pollutants: From carbon, zeolite, and metal-organic frameworks to molecularly imprinted adsorbents. Aerosol and Air Quality Research, 19(9), 2130–2150. https://doi.org/10.4209/aaqr.2019.06.0303
Sigot, L., et al. (2016). Comparing the performance of a 13X zeolite and an impregnated activated carbon for H₂S removal from biogas to fuel an SOFC: Influence of water. International Journal of Hydrogen Energy, 41(41), 18533–18541. https://doi.org/10.1016/j.ijhydene.2016.08.081
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Natasya Aisyah Dini, Safira Wahda Widyaputri, Rieza Mahendra Kusuma

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in the Majalah Ilmiah Swara Patra agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgment of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.