Studi Eksperimental Pengaruh Misalignment Poros Kopling pada Simulator PLTMH dengan Variasi Jumlah Belt terhadap Getaran dan Torsi Transmisi

Authors

  • Totok Widiyanto Politeknik Energi dan Mineral Akamigas
  • Sujono Politeknik Energi dan Mineral Akamigas
  • Moch. Bagus Bahtiar Politeknik Energi dan Mineral Akamigas
  • Hilmi Rizky Putra Politeknik Energi dan Mineral Akamigas

DOI:

https://doi.org/10.37525/mz/2025-2/1584

Keywords:

Getaran, Misalignment, PLTMH, Poros Kopling

Abstract

Penelitian ini membahas pengaruh misalignment poros kopling terhadap kinerja sistem transmisi pulley dan belt pada simulator Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) dengan variasi jumlah belt. Eksperimen dilakukan menggunakan motor listrik tiga fasa dengan daya 2,2 kW, sistem kopling, transmisi pulley-belt, serta unit turbin air axial flow. Data dikumpulkan melalui pengukuran kelurusan poros dengan dial indikator, analisis getaran menggunakan vibration analyzer, pengukuran temperatur komponen dengan infrared thermography, serta perhitungan torsi berdasarkan daya dan kecepatan putar pada rasio pulley 1:2. Hasil penelitian menunjukkan bahwa kondisi misalignment menghasilkan deviasi kelurusan hingga 0,82 mm dengan soft foot mencapai 0,65 mm, sedangkan setelah alignment deviasi turun menjadi ≤0,143 mm. Pada kondisi misalignment amplitudo getaran meningkat signifikan terutama pada arah radial dengan nilai maksimum 43,54 mm/s, serta temperatur bearing mencapai 62,8 °C, sedangkan setelah alignment nilai getaran dan temperatur menurun walau belum memenuhi standar ISO 10816/20816-3. Perhitungan torsi efektif yang ditransmisikan pada kondisi alignment berkisar antara 26,89–27,47 N.m (efisiensi belt 96–98%), sedangkan pada kondisi misalignment turun menjadi 24,65–26,04 N.m (efisiensi belt 88–93%). Hasil ini menegaskan bahwa misalignment tidak hanya meningkatkan getaran dan temperatur, tetapi juga menurunkan torsi yang ditransmisikan, sehingga berdampak pada efisiensi energi dan keandalan sistem.

References

Abouelanouar, B., Elkihel, A., & Gziri, H. (2020). Experimental study on energy consumption in rotating machinery caused by misalignment. SN Applied Sciences, 2. https://doi.org/10.1007/s42452-020-3043-2

Albdery, M. H., & Szabo, I. (2021). Experimental Study of the Effect of Misalignment on Rolling Element Bearing. European Journal of Engineering and Technology Research, 6(7), 87–90. https://doi.org/10.24018/ejeng.2021.6.7.2661

Chen, T. F., Lee, D. W., & Sung, C. K. (1998). An experimental study on transmission efficiency of a rubber V-belt CVT. Mechanism and Machine Theory, 33(4), 351–363. https://doi.org/https://doi.org/10.1016/S0094-114X(97)00049-9

Dereyne, S. (2015). An efficiency measurement campaign on belt drives. Energy Efficiency in Motor Driven Systems, Proceedings, 11. https://core.ac.uk/download/pdf/55693235.pdf

Garshelis, I. J. (2002). Torque and power measurement. The Mechatronics Handbook, 19-48-19–61. https://doi.org/10.1201/b15474-49

Hu, Y.-H., Du, Q., & Xie, S.-H. (2023). Nonlinear dynamic modeling and analysis of spur gears considering uncertain interval shaft misalignment with multiple degrees of freedom. Mechanical Systems and Signal Processing. https://doi.org/10.1016/j.ymssp.2023.110261

Krawiec, P., Warguła, Ł., Waluś, K. J., Gawrońska, E., Ságová, Z., & Matijošius, J. (2022). Efficiency and Slippage in Draw Gears with Flat Belts. In Energies (Vol. 15, Issue 23). https://doi.org/10.3390/en15239184

Li, Q., Du, Y. J., Wang, Y. J., Zhang, S., Liu, Q. L., Li, B., & Xu, W. W. (2022). Analysis on the Performances of Misaligned Journal Bearings using Full-Scale Test Rig and Conjugate Heat Transfer Method. Journal of Applied Fluid Mechanics, 15(3), 747–756. https://doi.org/10.47176/jafm.15.03.33138

Ludeca. (2002). A Practical Guide to Shaft Alignment. Prüftechnik, 63. https://www.plantservices.com/assets/knowledge_centers/ludeca/assets/A_Practical_Guide_to_Shaft_Alignment.pdf

Mascenik, J., & Murcinkova, Z. (2019). Experimental Determination of the Belt Transmission Slip. Management Systems in Production Engineering, 27(4), 205–210. https://doi.org/10.1515/mspe-2019-0032

Rahinj, S. (2019). Vibration Analysis of Misaligned Shafts. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2019.4512

Rion. (1941). Instruction Manual Vibration Meter VM-63A. 18(11), 225–226.

Saputra, A. H., & Wonoyudo, B. D. (2013). Pola Vibrasi Dari Transmisi V-Belt Dibawah Pengaruh Parallel Misalignment. Jurnal Teknik ITS, 2(2). https://doi.org/10.12962/j23373539.v2i2.4587

Silva, C. A. F., Manin, L., Rinaldi, R. G., Remond, D., Besnier, E., & Andrianoely, M.-A. (2018). Modeling of power losses in poly-V belt transmissions: Hysteresis phenomena (enhanced analysis). Mechanism and Machine Theory, 121, 373–397. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2017.10.008

Umbrajkaar, A., Krishnamoorthy, A., & Dhumale, R. (2020). Vibration Analysis of Shaft Misalignment Using Machine Learning Approach under Variable Load Conditions. Shock and Vibration, 2020, 1–12. https://doi.org/10.1155/2020/1650270

Villalba, R. T., Ramírez, H., Estrada, H. Á., López, J. O., González, A. R., Barrera, K. O., Almanza, L. R., & Corrales, D. E. (2024). Effect of Combined Misalignments on Vibrations of a Single-Stage Spur Gear Transmission System: An Experimental Approach. IEEE Access, 12, 50030–50043. https://doi.org/10.1109/ACCESS.2024.3385371

Widodo, I., Khoryanton, A., & Pramono, A. (2021). Analysis of vibration due to misalignment in the clutch cluster installation of centrifugal pump. IOP Conference Series: Materials Science and Engineering, 1108. https://doi.org/10.1088/1757-899X/1108/1/012037

Yanto, A., Anrinal, Saferi, R., & Memori, Z. (2020). Study of Experimental Vibration Due to Misalignment of Pulley-Belt in Rotary Machine. Jurnal Teknik Mesin, 10(2), 118–122. https://doi.org/10.21063/jtm.2020.v10.i2.118-122

Published

2025-11-25

How to Cite

Widiyanto, T., Sujono, Moch. Bagus Bahtiar, & Hilmi Rizky Putra. (2025). Studi Eksperimental Pengaruh Misalignment Poros Kopling pada Simulator PLTMH dengan Variasi Jumlah Belt terhadap Getaran dan Torsi Transmisi. Jurnal Nasional Pengelolaan Energi MigasZoom, 7(2). https://doi.org/10.37525/mz/2025-2/1584