Perengkahan Katalitik Residu Kilang PPSDM Migas Dengan Katalis Zeolit Alam

Authors

  • Yoeswono Yoeswono PPSDM Migas

DOI:

https://doi.org/10.37525/mz/2023-1/403

Keywords:

Minyak berat, Residu, Perekahan, Zeolit Alam

Abstract

Telah dilakukan preparasi dan karakterisasi katalis zeolit alam aktif (ZAA) dan Co-Ni-ZAA untuk mempelajari pengaruh katalis zeolit pada perengkahan katalitik residu. Katalis dibuat dengan metode impregnasi, dilanjutkan kalsinasi pada temperatur 500 °C, oksidasi, dan reduksi hidrogen. Karakterisasi katalis zeolit menggunakan analisis XRD, adsorpsi N2, analisis FTIR, dan keasaman katalis.

Hasil karakterisasi menunjukkan bahwa pengembanan logam Co dan Ni pada permukaan zeolit mengakibatkan penurunan luas permukaan sebesar 55,7% dan penurunan volume pori sebesar 41,5 %. Penurunan luas permukaan pada katalis Co-Ni/ZAA dibandingkan katalis ZAA tersebut diikuti dengan peningkatan distribusi pori dengan jari-jari lebih dari 15 Å (mesopri sempit). Hal ini menunjukkan bahwa logam Co dan Ni yang diembankan teradsorp pada pori dengan ukuran lebih besar tetapi tidak sampai menutup pori tersebut sepenuhnya sehingga menyisakan pori sempit yang berakibat pada penurunan luas permukaan katalis.

References

Mul, G., & Moulijn, J. A. (2005). Preparation of Supported Metal Catalysts. Dalam J. A. Anderson & M. F. Garcia (Eds.), Supported Metals in Catalysis. Imperial College Press.

Hagen, J. (2006). Industrial Catalysis: A Practical Approach (Edisi ke-2). Wiley-VCH Verlag GmbH & Co. KGaA.

Gallei, E. F., Hesse, M., & Schwab, E. (2002). Development of Industrial Catalysts. Dalam G. Ertl, H. Knözinger, F. Schüth, & J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis (Edisi ke-2). Wiley-VCH Verlag GmbH & Co. KGaA.

Haber, J., Block, J. H., & Delmon, B. (1995). Manual of Methods and Procedures for Catalyst Characterization (Technical Report). Pure and Applied Chemistry, 67(8/9), 1257-1306.

Jaksic, M. M. (2000). Volcano Plots along the Periodic Table, Their Causes and Consequences on Electrocatalysis for Hydrogen Electrode Reactions. Journal of New Materials for Electrochemical Systems, 3, 167-182.

Kolasinski, K. W. (2008). Surface Science: Foundations of Catalysis and Nanoscience (Edisi ke-2). John Wiley & Sons Ltd.

Augustine, R. L. (1996). Heterogeneous Catalysis for Synthetic Chemist. Marcel Dekker Inc.

Castellan, G. W. (1983). Physical Chemistry (Edisi ke-3). Addison-Wesley Publishing Company, Inc.

Byrappa, K., & Kumar, B. V. S. (2007). Characterization of Zeolites by Infrared Spectroscopy. Asian Journal of Chemistry, 19(6), 4933-4935.

Maygasari, D. A., Satriadi, H., Widayat, J., Jestyssa, A. H., Roesyadi, A., & Rachimullah, M. (2010). Optimasi Proses Aktivasi Katalis Zeolit Alam Dengan Uji Proses Dehidrasi Etanol. Prosiding, Seminar Rekayasa Kimia dan Proses-Jurusan Teknik Kimia Fakultas Teknik Universitas Diponegoro, 4-5 Agustus 2010, Semarang.

Li, G. (2005). FT-IR studies of zeolite materials: characterization and environmental applications (Tesis doktor). University of Iowa. Tersedia di http://ir.uiowa.edu/etd/96

Treacy, M. M. J., & Higgins, J. B. (2007). Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier B.V.

Rianto, L. B., Amalia, S., Susi Nurul Khalifah, S. N. (2012). Pengaruh Impregnasi Logam Titanium Pada Zeolit Alam Malang Terhadap Luas Permukaan Zeolit. Alchemy, 2(1), 58-67.

Carruthers, J. D. (2007). Evaluating Porosity: Low Pressure Hysteresis, Activated Entry and Carbon Swelling. Diakses dari http://acs.omnibooksonline.com/data/papers/2007_D081.pdf pada 25 Februari 2016.

Braida, W. J., Pignatello, J. J., Lu, Y., Ravikovitch, P. I., Neimark, A. V., & Xing, B. (2003). Sorption Hysteresis of Benzene in Charcoal Particles. Environmental Science & Technology, 37, 409-417.

Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, Surface Area and Porosity (Edisi ke-2). Academic Press Inc.

Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., ... & Siemieniewska, T. (1985). Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure & Applied Chemistry, 57(4), 603-619.

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Reinoso, F. R., Rouquerol, J., ... & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051–1069.

Majid, A. B., Trisunaryanti, W., Priastomo, Y., Febriyanti, E., Hasyyati, S., & Nugroho, A. (2012). Karakterisasi dan Uji Aktivitas Katalitik Zeolit Alam Indonesia pada Hidrorengkah Ban Bekas dengan Preparasi Sederhana. Prosiding Seminar Nasional Kimia Unesa 2012, 25 Pebruari 2012, Surabaya.

Kadarwati, S., & Wahyuni, S. (2015). Characterization and Performance Test of Palm Oil Based Bio-Fuel Produced Via Ni/Zeolite-Catalyzed Cracking Process. International Journal of Renewable Energy Development, 4(1), 32-38.

Jeon, H. J., & Kim, Y. W. (2015). Catalytic Cracking Catalyst for RFCC Process with Maximized Diesel Yields and a Method for the Preparation Thereof. US Patents No. US20150336084 A1.

Meng, X., Xu, C., Li, L., Gao, J. (2011a). Cracking Performance of Gasoline and Diesel Fractions from Catalytic Pyrolysis of Heavy Gas Oil Derived from Canadian Synthetic Crude Oil. Energy & Fuels, 25(8), 3382-3388.

Meng, X., Xu, C., Li, L., Gao, J. (2011b). Cracking Performance and Feed Characterization Study of Catalytic Pyrolysis for Light Olefin Production. Energy & Fuels, 25(4), 1357-1363.

Gray, M. R. (1994). Upgrading Petroleum Residues and Heavy Oils. Marcel Dekker, Inc.

Raseev, S. (2003). Thermal and Catalytic Processes in Petroleum Refining. Marcel Dekker, Inc.

Cejka, J., Corma, A., & Zones, S. (2010). Zeolites and Catalysis: Synthesis, Reactions, and Applications. Wiley-VCH Verlag GmbH & Co. KGaA.

Aguado, J., Serrano, D. P., San Miguel, G., Escola, J. M., & Rodriguez, J. M. (2007). Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins. Journal of Analytical and Applied Pyrolysis, 78, 153–161.

van Speybroeck, V., Hemelsoet, K., Joos, L., Waroquier, M., Bell, R. G., & Catlow, C. R. A. (2015). Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews, 44(20), 7044–7111.

Nassar, N. N., Hassan, A., & Pereira-Almao, P. (2011). Application of Nanotechnology for Heavy Oil Upgrading: Catalytic Steam Gasification/Cracking of Asphaltenes. Energy & Fuels, 25(4), 1566–1570.

Abul-Hamayel, M. A. (2002). Atmospheric Residue as Feedstock to High-Severity Fluid Catalytic Cracking. Petroleum Science and Technology, 20(5-6), 497-506.

Tugsuu, T., Yoshikazu, S., Enkhsaruul, B., & Monkhoobor, D. (2012). A Comparative Study on the Hydrocracking for Atmospheric Residue of Mongolian Tamsagbulag Crude Oil and Other Crude Oils. Advances in Chemical Engineering and Science, 02(03), 402-407.

Zhang, Y., Liu, X., Sun, L., Xu, Q., Wang, X., & Gong, Y. (2016). Catalytic cracking of n-hexane over HEU-1 zeolite for selective propylene production: Optimizing the SiO2/Al2O3 ratio by in-situ synthesis. Fuel Processing Technology, 153, 163-172.

Remón, J., Arauzo, J., García, L., Arcelus-Arrillaga, P., Millan, M., Suelves, I., & Pinilla, J. (2016). Bio-oil upgrading in supercritical water using Ni-Co catalysts supported on carbon nanofibers. Fuel Processing Technology, 154, 178-187.

Li, T., Liu, H., Fan, Y., Yuan, P., Shi, G., Bi, X. T., & Bao, X. (2012). Synthesis of Zeolite Y from Natural Aluminosilicate Minerals for Fluid Catalytic Cracking Application. Green Chemistry, 14(12), 3255.

Liu, P., Zhang, Z., Jia, M., Gao, X., & Yu, J. (2015). ZSM-5 Zeolites with Different SiO2/Al2O3 Ratios as Fluid Catalytic Cracking Catalyst Additives for Residue Cracking. Chinese Journal of Catalysis, 36(6), 806-812.

Pedrosa, A. M. G., Souza, M. J., Melo, D. M., & Araujo, A. S. (2006). Cobalt and nickel supported on HY zeolite: Synthesis, characterization and catalytic properties. Materials Research Bulletin, 41(6), 1105-1111.

Chen, L., Li, X., Rooke, J. C., Zhang, Y., Yang, X., Tang, Y., Xiao, F., & Su, B. (2012). Hierarchically Structured Zeolites: Synthesis, Mass Transport Properties and Applications. Journal of Materials Chemistry, 22(34), 17381.

Zhao, Y., & Yu, Y. (2011). Kinetics of asphaltene thermal cracking and catalytic hydrocracking. Fuel Processing Technology, 92(5), 977-982.

Sadeghbeigi, R. (2012). Fluid Catalytic Cracking Handbook. Butterworth-Heinemann.

Alsobaai, A. M., Hameed, B. H., & Zakaria, R. (2006). Hydrocracking of Gas Oil using USY-Zeolite-Based Catalyst. Proceedings of the 1st International Conference on Natural Resources Engineering & Technology 2006, 243-254.

Ghosh, U., Kulkarni, K., Kulkarni, A. D., & Chaudhari, P. L. (2015). Review – Hydrocracking using Different Catalysts. Chemical and Process Engineering Research, 34, 51-55.

Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric Identification of Organic Compounds (Edisi ke-7). John Wiley & Sons, Inc.

Usui, K., Kidena, K., Murata, S., Nomura, M., & Trisunaryanti, W. (2004). Catalytic hydrocracking of petroleum-derived asphaltenes by transition metal-loaded zeolite catalysts. Fuel, 83(14-15), 1899-1906.

Chen, L., Yu, Z., Zong, Z., Zhu, Z., & Wu, Q. (2011). The Effects of Temperature and Hydrogen Partial Pressure on Hydrocracking of Phenanthrene. International Journal of Chemistry, 3(2), 67-73.

Trisunaryanti, W., Triyono, Rizki, C. N., Saptoadi, H., Alimuddin, Z., Syamsiro, M., & Yoshikawa, K. (2013). Characteristics of Metal Supported-Zeolite Catalysts for Hydrocracking of Polyethylene Terephthalat. IOSR Journal of Applied Chemistry, 3(4), 29-34.

Published

2023-06-30

How to Cite

Yoeswono , Y. . (2023). Perengkahan Katalitik Residu Kilang PPSDM Migas Dengan Katalis Zeolit Alam. Jurnal Nasional Pengelolaan Energi MigasZoom, 5(1), 11–26. https://doi.org/10.37525/mz/2023-1/403