Pemodelan 2D dan 3D Geolistrik dalam Identifikasi Struktur Geologi dan Potensi Mineral di Desa Wonosemi: Mendukung Pemanfaatan Sumber Daya Alam yang Berkelanjutan
DOI:
https://doi.org/10.37525/sp/2025-1/615Abstract
Penelitian ini bertujuan untuk mengeksplorasi potensi sumber daya mineral di Desa Wonosemi, Blora, Jawa Tengah, menggunakan metode geolistrik dan pemodelan 2D maupun 3D. Metode ini digunakan untuk memperoleh pemahaman yang lebih mendalam tentang struktur geologi bawah permukaan, khususnya dalam mengidentifikasi struktur dan formasi batuan potensial. Data geolistrik yang dikumpulkan dan diinterpretasikan mengungkapkan adanya formasi batuan kapur, serpih, dan batupasir dengan karakteristik resistivitas dan chargeability yang menunjukkan kemungkinan keberadaan mineral berharga. Temuan ini memberikan kontribusi terhadap pengetahuan geosains lokal serta potensi ekonomi yang dapat dikembangkan di wilayah ini.
Penelitian ini menegaskan bahwa penerapan teknologi geofisika dalam eksplorasi mineral adalah langkah yang berarti dalam mengoptimalkan pengelolaan sumber daya alam secara berkelanjutan. Integrasi metode geolistrik yang digunakan tidak hanya memfasilitasi visualisasi yang lebih detail terhadap struktur geologi, tetapi juga memberikan dasar yang kuat untuk strategi pengembangan yang berkelanjutan. Rekomendasi dari penelitian ini menyarankan untuk melanjutkan penggunaan teknik geofisika dalam konteks pengelolaan sumber daya mineral, dengan mempertimbangkan aspek-aspek lingkungan dan ekonomi secara seimbang, untuk mendukung pertumbuhan ekonomi lokal dan kesejahteraan masyarakat.
References
Abidin, H. Z., Andreas, H., & Gumilar, I. (2009). Land subsidence and groundwater extraction in Jakarta (Indonesia). In Proceedings of the International Symposium on Land Subsidence, EISOLS.
Binley, A., & Kemna, A. (2005). DC resistivity and induced polarization methods. In Hydrogeophysics (pp. 129-156). Springer, Dordrecht.
Burger, H. R., Sheehan, A. F., & Jones, C. H. (2006). Introduction to Applied Geophysics: Exploring the Shallow Subsurface. W. W. Norton & Company.
Canty, M., & Davey, T. (2019). Application of Induced Polarization in Geophysical Exploration: A Case Study in Wonosemi Village, Blora, Central Java. Journal of Geophysical Research, 32(4), 112-129.
Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, 52(5), 379-398.
Griffiths, D. H., & Barker, R. D. (1993). Two-dimensional resistivity imaging and modeling in areas of complex geology. Journal of Applied Geophysics, 29(3), 211-226.
Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting. Pergamon Press.
Kearey, P., Brooks, M., & Hill, I. (2002). An Introduction to Geophysical Exploration. Blackwell Science.
Loke, M. H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys. Retrieved from https://www.geotomosoft.com
Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44(1), 131-152.
Parasnis, D. S. (1997). Principles of Applied Geophysics. Chapman & Hall.
Reynolds, J. M. (2011). An Introduction to Applied and Environmental Geophysics. John Wiley & Sons.
Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., & Richard, G. (2005). Electrical resistivity survey in soil science: a review. Soil and Tillage Research, 83(2), 173-193.
Spitzer, K. (1998). The three-dimensional DC sensitivity of multi-electrode arrays. Geophysical Journal International, 134(3), 704-712.
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics. Cambridge University Press.
Ward, S. H. (1983). Resistivity and induced polarization methods. In Geotechnical and Environmental Geophysics (Vol. 1, pp. 147-190). Society of Exploration Geophysicists.
Ward, S. H. (1990). Resistivity and induced polarization methods. In Geotechnical and Environmental Geophysics (Vol. 1, pp. 147-189). Society of Exploration Geophysicists.
White, R. E. (1983). The application of induced polarization to mineral exploration. In Development in Economic Geology (Vol. 16, pp. 221-268). Elsevier.
Zhdanov, M. S., & Keller, G. V. (1994). The geoelectrical methods in geophysical exploration. Elsevier.
Zonge, K., Wynn, J., & Urquhart, S. (2005). Resistivity, induced polarization, and complex resistivity. In Near-surface geophysics (pp. 265-300). Society of Exploration Geophysicists.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elia Ayunita

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in the Majalah Ilmiah Swara Patra agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgment of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.