Energy Baseline for Eficiency Verification in Yarn Industry: A Case Study

Authors

  • Todo H.T. Simarmata Pusat Pengembangan Sumber Daya Manusia Ketenagalistrikan, Energi Baru, Terbarukan, dan Konservasi Energi
  • Aspita Dyah Fajarsari Pusat Pengembangan Sumber Daya Manusia Ketenagalistrikan, Energi Baru, Terbarukan, dan Konservasi Energi
  • Nico Juni Ferson Pusat Pengembangan Sumber Daya Manusia Ketenagalistrikan, Energi Baru, Terbarukan, dan Konservasi Energi
  • Hari Kartiko PT.Indorama Synthetics

DOI:

https://doi.org/10.37525/mz/2025-2/1606

Keywords:

Energy Baseline, Energy Management, Energy Performance, Verification, Regression

Abstract

Energy consumption in the yarn manufacturing industry is significant due to electricity‑intensive processes and auxiliary systems; energy intensity (kWh per kg of yarn) is a key indicator of efficiency and cost. To accurately evaluate savings from efficiency measures, the study developed a multiple linear regression (MLR) baseline model for a large polyester and synthetic yarn plant in West Java Indonesia. The model used historical 2022 data to relate energy use to production output and operational variables, enabling prediction of energy consumptionin the absence of improvements. Statistical analysis showed the regression was significant. The plant’s energy intensity averaged ~3.4–4.1 kWh/kg, which is moderate compared with European benchmarks. Using the model as an energy performance indicator (EnPI), the 2023 monitoring year data were compared to baseline predictions to verify savings. The comparison revealed that energy‑saving initiatives—such as improved motors and climate control—reduced actual energy use below the baseline, confirming real efficiency gains while accounting for factors like production level and weather. The case study demonstrates that MLR‑based EnPI baselines provide a robust framework for moni-toring and verifying industrial energy savings and benchmarking performance.

References

Palacios-Mateo, C., van der Meer Y., Seide G. (2021). Analysis of the polyester clothing value chain to identify key intervention points for sustainability, Vol. 33, Environmental Sciences Europe. Springer Science and Business Media Deutschland GmbH.

Demirdelen T., Aksu İÖ, Yilmaz K., Koç D. D., Arikan M., Şener A. (2023). Investigation of the Carbon Footprint of the Textile Industry: PES- and PP-Based Products with Monte Carlo Uncertainty Analysis. Sustainability (Switzerland). Oct 1;15(19).

Branchetti S., Petrovich C., Ciaccio G., De Sabbata P., Frascella A., Nigliaccio G. (2019). Energy consumption characterization based on a self-analysis tool: A case study in yarn manufacturing. In: SMARTGREENS 2019 - Proceedings of the 8th International Conference on Smart Cities and Green ICT Systems. SciTePress; p. 40–50.

Medojevic M., Medojevic M., Cosic I., Lazarevic M., Dakic D. (2017). Determination and analysis of energy efficiency potential in socks manufacturing system. In: Annals of DAAAM and Proceedings of the International DAAAM Symposium. Danube Adria Association for Automation and Manufacturing, DAAAM; p. 582–91.

Kelly Kissock J., Eger C. (2008). Measuring industrial energy savings. Appl Energy; 85(5):347–61.

Sakti S., Sopha B. M., Saputra E. S. T. (2021). Energy Efficiency Analysis in a Textile Company Using DMAIC Approach. IOP Conf Ser Mater Sci Eng. Mar 1;1096(1):012007.

Koc E, Kaplan E. An Investigation on energy Consumption in Yarn Production with Special Reference to Ring Spinning. Fibres & Textiles in Eastern Europe. 2007 Oct;15.

Palamutcu S. (2010). Electric energy consumption in the cotton textile processing stages. Energy. 35(7):2945–52.

Abourriche Y., Tighazoui A., Zint V., Rose B., Boudes J. F., Mauer D., et al. (2025). Analysis of the factors influencing the electricity consumption in a confectionery plant. Energy Effic [Internet]. 18(4):26. Available from: https://doi.org/10.1007/s12053-025-10313-5.

Grimaldo-Guerrero J. W., Silva-Ortega J.I., Candelo-Becerra J. E., Balceiro-Alvarez B., Cabrera-Anaya O. (2021). The behavior of the annual electricity demand and the role of economic growth in colombia. International Journal of Energy Economics and Policy. 11(5):8–12.

BSI Standards Publication Energy management systems-Measuring energy performance using energy baselines (EnB) and energy performance indicators (EnPI)-General principles and guidance. (2015).

Amundson T., Brooks S., Eskil J., Power B., Martin S., Mulqueen S.. Elements of Defensible Regression-Based Energy Models for Monitoring and Reporting Energy Savings in Industrial Energy Efficiency Operation and Maintenance Projects.

Cerdancova L., Dolge K., Kudurs E., Blumberga D. (2021). Energy Efficiency Benchmark in Textile Manufacturing Companies. Environmental and Climate Technologies. Jan 1;25(1):331–42.

Downloads

Published

2025-11-25

How to Cite

Simarmata, T. H. ., Fajarsari, A. D., Ferson, N. J., & Kartiko, H. (2025). Energy Baseline for Eficiency Verification in Yarn Industry: A Case Study. Jurnal Nasional Pengelolaan Energi MigasZoom, 7(2), 113–124. https://doi.org/10.37525/mz/2025-2/1606