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ABSTRACT

Energy consumption in the yarn manufacturing industry is
significant due to electricity-intensive processes and auxiliary
systems; energy intensity (kWh per kg of yarn) is a key
indicator of efficiency and cost. To accurately evaluate savings
from efficiency measures, the study developed a multiple
linear regression (MLR) baseline model for a large polyester
and synthetic yarn plant in West Java Indonesia. The model
used historical 2022 data to relate energy use to production
output and operational variables, enabling prediction of energy
consumptionin the absence of improvements. Statistical
analysis showed the regression was significant. The plant’s
energy intensity averaged ~3.4—4.1 kWh/kg, which is moderate
compared with European benchmarks. Using the model as an
energy performance indicator (EnPI), the 2023 monitoring year
data were compared to baseline predictions to verify savings.
The comparison revealed that energy-saving initiatives—such
as improved motors and climate control—reduced actual
energy use below the baseline, confirming real efficiency gains
while accounting for factors like production level and weather.
The case study demonstrates that MLR-based EnPI baselines
provide a robust framework for moni-toring and verifying
industrial energy savings and benchmarking performance.

Keywords : Energy Baseline, Energy Management, Energy
Performance, Verification, Regression
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INTRODUCTION

Energy performance in the yarn industry
has become a critical focus over the past
decade, driven by sustainability goals and cost
pressures. Synthetic yarns (primarily polyester,
polypropylene, nylon, etc.) dominate global textile
production, comprising roughly two-thirds of
textile fibers (Palacios-Mateo et al., 2021).

Manufacturing these yarns is energy-intensive,
consuming electricity and thermal energy at
various stages from polymer production to fiber
extrusion and spinning. Energy intensity, often
expressed as energy use per unit of output (e.g.
kilowatt-hours per kilogram of yarn, kWh/kg),
is a key performance indicator for benchmarking
efficiency and environmental impact. High energy
intensity not only raises production costs but
also correlates with significant greenhouse gas
emissions (Demirdelen et al., 2023; Palacios-
Mateo et al., 2021)

Energy efficiency is a critical concern in
the yarn manufacturing industry, not only for
environmental reasons butalso due to the significant
share of energy in production costs. In typical yarn
mills (e.g. spinning mills), energy costs can range
from about 5-18% of total manufacturing costs
(and even 10-25% in certain spinning processes)
(Branchetti et al., 2019).

Reducing energy use through efficiency
measures (such as installing efficient motors,
improving climate control, etc.) can thus yield
substantial cost savings. However, verifying these
energy savings is challenging, because savings
represent energy not used and cannot be measured
directly (Medojevic et al., 2017).

A reliable approach is needed to quantify how
much energy has been saved after an improvement,
accounting for factors like production levels and
weather that also affect consumption. This is
where multiple linear regression (MLR) methods
come into play. MLR-based models are widely
used in industrial energy measurement and
verification (M&V) to establish an energy baseline
and validate savings against that baseline (Kelly
Kissock & Eger, 2008) .

Yarn manufacturing (spinning) involves
processes that are electricity-intensive, powering
machinery like blowroom lines, carding machines,

ring frames or rotors, winding machines, and
extensive climate control (air conditioning and
humidity control systems) to maintain fiber
quality. A large portion of energy in a textile plant
is consumed in the spinning stage — one analysis
reported that spinning processes are responsible
for approximately 93% of the total electricity
consumption in the production of textile yarn.
(Branchetti et al., 2019).

The key drivers of energy consumption in a
yarn factory include: (1) Production Output: The
amount of yarn produced (e.g. in kilograms or yarn
count) has a direct impact on energy use. Machines
draw power roughly proportional to throughput, so
higher production generally means higher energy
consumption, (2) Machine Operating Parameters:
Machine speeds, load factors, and utilization rates
influence energy usage. For instance, running more
spindles or higher spindle speeds will consume
more electricity, (3) Auxiliary Systems: Supporting
systems such as compressed air, lighting, and
particularly climate control (humidification and
air-conditioning) can draw substantial energy. In
many spinning mills, the air conditioning/chiller
plant is a major consumer (one case found ~80%
of the specific energy consumption was from AC
and chilling systems (Sakti et al., 2021). Ambient
conditions (outside temperature and humidity)
affect how hard these systems must work, (4)
Raw Material or Process Differences: Different
fiber types (cotton vs. synthetic blends) or process
routes can have different energy profiles. For
example, open-end (rotor) spinning tends to use
less energy per kg of yarn than ring spinning (Koc
& Kaplan, 2007), so a shift in product mix could
influence total energy use.

All these factors cause normal fluctuations
in a plant’s energy consumption. Thus, when an
energy efficiency measure is implemented, simply
comparing the utility bills “before vs after” can be
misleading unless adjustments are made for these
variables. A period of lower production or milder
weather could appear as “savings” when in fact
it’s due to external factors. To accurately verify
savings, we need a baseline model that correlates
energy use with the relevant independent variables
(production, weather, etc.), and then use that model
to predict what energy would have been used had
no efficiency changes been made. Multiple linear
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regression provides a robust statistical framework
to build such a baseline model.

RESEARCH METHOD
Multiple linear regression (MLR) is a
commonly used method for Measurement

and Verification (M&V) of energy savings in
industrial facilities. By modeling a plant’s energy
consumption as a function of key operational
variables (production output, operating conditions,
etc.), MLR provides a baseline to compare what
energy use would have been without efficiency
measures against actual post-implementation
usage. An MLR baseline model for a yarn factory
can be expressed generically as:
E=pB,+B,P +B,P,+B, P, +...+E
where:

e E is the energy consumption over a certain
period (e.g. kWh per day or per month).

P1, P2, P3 is the production specific output in
that period (e.g. kilograms of yarn produced).
B0, p1, B2, P3 are the regression coeflicients
determined by fitting the model to historical
data.

B0 is the intercept (the model’s estimate

of the energy use when all independent
variables are zero), and 1, B2, B3, ... quantify
how sensitive energy consumption is to
each factor. For instance, B1 (coefficient on
production) represents the incremental
energy consumption per unit of production
— effectively, how many kWh are needed
for each additional kilogram of yarn output
(Branchetti et al., 2019). B0, the intercept,
represents the base load or fixed energy use
of the facility when production is zero (e.g.
energy for lighting, idling equipment, or
baseline HVAC needs).

€ is the error term, accounting for random
fluctuations and factors not captured by the
model.

A. The Case Study

The plant choosen as the case study is
located in West Jawa Indonesia is the largest
plant in ASEAN producing differentiated
polyester products for high-value textiles.
It started as a cotton spinning mill and later
diversified into synthetic yarn and fibre

production.

| Electricity | | Electricity | | Electricity | | Electricity | | Electricity | | Electricity | | Electricity | | Electricity |
. — r—— Drawing Dirawing Speed Frama I Winding Steaming -
Rayon Blowing (i) }_'| Carding (1) "' Biraaker (it} H Finisher (iv) }’" ) Spinning (vi) i) i) Packing

Figure 1. Typical Production Process (Sakti et al., 2021)

The yarn manufacturing process generally
comprises eight sequential stages that convert raw
fiber into finished yarn: (i) Mixing and Blowing:
The process begins with the opening and blending
of raw fibers sourced from multiple bales to
achieve a homogeneous mix in line with product
specifications. Using high-capacity —mixing
and blowing machines, compressed bales are
opened, cleaned of contaminants, and thoroughly
blended. This stage prepares the fibers into an
aligned, continuous sheet (commonly referred to
as a lap) for the subsequent process. (ii) Carding:
During carding, the opened fibers are further
individualized, combed, and aligned into a thin
web, which is then condensed into a strand known
as a sliver. Carding serves to straighten the fibers,

remove residual impurities and short fibers, and
produce a continuous sliver of predominantly
parallel, longer fibers that provides the basis for
uniform yarn quality. (iii) Drawing (Breaker Draw
Frame): In the first drawing passage (breaker
draw frame), multiple carded slivers are combined
and drafted simultaneously. This drafting action
attenuates the slivers while blending them and
reducing variations in fiber mass per unit length.
As a result, the breaker drawing stage markedly
enhances sliver uniformity by averaging out
thickness irregularities across the combined
strand. (iv) Drawing (Finisher Draw Frame): The
partially drawn sliver from the breaker stage is
then processed through a second drawing passage,
the finisher draw frame. Here, additional drafting
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and auto-leveling are applied to further improve
evenness. This stage yields a highly uniform
sliver with consistent linear density (weight per
unit length), which is appropriate for the ensuing
spinning operations. (v) Speed Frame (Roving):
The uniform sliver is subsequently fed into the
speed frame (roving frame), where it is further
attenuated and imparted with a slight twist to form
roving. Roving constitutes a relatively thick, low-
twist intermediate yarn that is wound onto bobbins.
This step provides the strand with sufficient strength
and reduced thickness to withstand handling in the
final spinning stage without excessive breakage.
(vi) Ring Spinning (Ring Frame): In the ring
spinning stage, the roving is converted into fine
yarn. The roving is continuously drawn to the
desired fineness in the ring frame and subjected
to a higher degree of twist to generate a strong,
coherent yarn. The spun yarn is then wound onto
small bobbins known as cops. At this point, the
yarn attains its specified count (fineness) and
mechanical strength. (vii) Winding: Following
spinning, yarn from multiple cops is rewound and
consolidated onto larger packages, typically cones.
The winding process often incorporates yarn
clearing, during which defects and uneven portions
are removed to ensure quality. By transferring
the yarn onto cones, it is prepared in continuous
lengths suitable for storage, transportation, and
subsequent processes such as weaving or knitting.
(viii) Steaming (Conditioning): In the final stage,
the yarn packages are conditioned by exposure
to steam in a controlled chamber to adjust and
standardize their moisture content. Appropriate
moisture conditioning is critical for maintaining
yarn strength, flexibility, and weight consistency.
The steam temperature and treatment duration
are regulated according to the yarn’s material
characteristics and count. This conditioning step
stabilizes the yarn structure, mitigates brittleness
and static buildup, and ensures that the final
product complies with required quality standards
for end use or commercialization.

After completing the eight main processes
above, the finished yarn cones are packed for
shipment according to customer requirements.
Packaging methods include stacking cones on
pallets, packing in neutral or branded cartons,
or using sacks, ensuring the yarn is protected

and delivered in the requested format. This final
step, while outside the spinning process itself,
is essential for preserving yarn quality during
transport and handling.

Energy consumption breakdown in a textile
spinning mill: (2a) overall plant energy by use, and
(right) production process energy by machinery
stage. As shown in the charts, the production
machinery dominates the energy usage in the
textile plant, accounting for about 74% of total
power consumption. In comparison, auxiliary
systems for climate control (air conditioning in the
plant and a chiller for cooling) take up roughly a
quarter of the energy (13% and 12% respectively),
while lighting and office AC are minimal uses.
This indicates that the manufacturing process
itself is the primary driver of electricity costs,
although environmental control is also significant
in spinning mills (maintaining temperature and
humidity is critical for yarn quality).

Overall Plant Energy Use

O%. 13%

V| 12%

: 1%
74%
= AC (Office)

= AC (Plant) = Production Process

= Chiller

Lighting

Figure 2a. Overall Plant Energy Use ((Sakti et al.,
2021))

Production Process SEU

6% 1%

8%

) » Drawing Hnisher (iv)

s Speed Frame (v) = Steamer (viii)

Figure 2b. Typical SEU energy consumption
distribution ((Sakti et al., 2021))
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Energy consumption breakdown in a textile
spinning mill: (2a) overall plant energy by use, and
(right) production process energy by machinery
stage. As shown in the charts, the production
machinery dominates the energy usage in the
textile plant, accounting for about 74% of total
power consumption. In comparison, auxiliary
systems for climate control (air conditioning in the
plant and a chiller for cooling) take up roughly a
quarter of the energy (13% and 12% respectively),
while lighting and office AC are minimal uses.
This indicates that the manufacturing process
itself is the primary driver of electricity costs,
although environmental control is also significant
in spinning mills (maintaining temperature and
humidity is critical for yarn quality).

Within the production process segment, ring
spinning is by far the most energy-intensive stage.
According to the detailed breakdown, the ring
spinning machines consume about 68% of the
production-process energy — which equates to
roughly half of the plant’s total energy alone. The
high energy demand is due to the large number
of spindles running at high speeds continuously,
and the power needed to overcome friction (in
rings, travelers, and spindles) and drive the yarn
winding. In the given data, ring spinning’s energy
usage vastly exceeds all other stages, identifying
it as the primary target for energy efficiency
improvements.

The carding department is the second most
energy-consuming process, but at a much lower
share than spinning. Carding accounts for about
11% of the production-process energy (~8% of
total plant energy). Carding involves heavy drums
and motors (and suction for fiber dust), so it draws
significant power, though its contribution is far
less than that of ring spinning.

Other process stages such as winding
(approximately 8% of production energy) and the
yarn conditioning steamer (~6%) also consume
notable portions. Winding machines (autoconers)
require power for high-speed yarn winding and
operate suction for cleaning yarn.

The steamer uses thermal energy (and electrical
controls) to produce steam and maintain vacuum,
explaining its moderate share. Meanwhile, the
preparatory steps — speed frame, drawing, and
blow room — are comparatively low in energy

consumption, together only accounting for a few
percent of the production energy. In the chart, the
speed frame (roving) is ~3%, the two drawing
frames total ~3%, and blow room just ~1%. These
machines, though essential, have lower motor
loads or operate intermittently, so their impact on
the overall energy profile is small.

In summary, the energy usage profile highlights
ring spinning as the dominant energy consumer,
with carding as a distant second. Winding and
steaming are mid-level consumers, and all other
processes use relatively little energy individually.
The facility’s utilities (air conditioning and
chillers) also form a substantial secondary load.
Therefore, any energy management efforts should
focus first on the ring spinning frames, followed
by carding and other significant machines, as well
as optimizing the climate control systems.

B. Data Collection

Historical data of the plant’s production in
2022 and 2023 was gathered. Data on production
by different production line in the Spinning
department (tons), total energy consumption of the
plant (kWh/month) was collected. Based on these
data, the SEC in each area was calculated.

Energy Distribution

| Product ‘ BAHU
@ Lighting Dept And G thers ETotal L

Figure 3. Energy Consumption Distribution of the
Plant

The donut chart shows how electricity
is allocated across different systems in a
yarn-spinning facility. Production lines (spinning,
winding and related equipment) account for about
62 % of the plant’s energy consumption. This
dominance is typical for textile mills: a study on
cotton textile processing found that electricity
makes up 93 % of the energy consumed in
spinning and 85 % in weaving (Palamutcu, 2010),
and that energy costs represent 8—10 % of total
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production cost. Polyester yarn production is
similarly energy-intensive because polymerisation
and melt-spinning require high temperatures and
continuous machine operation.

The AHU (air-handling unit) segment (15 %)
reflects the need to control temperature and
humidity. Cotton fibres are sensitive to moisture;
maintaining relative humidity around 60-65 %
prevents yarn breakage and static, so substantial
energy is spent conditioning air. Chillers and
air-conditioning systems add another 10 %,
illustrating that cooling is vital for both polyester
and cotton lines to dissipate heat from high-speed
motors.

Compressed air systems, used for cleaning,
pneumatic transport and actuating machinery,
contribute 7 % of energy use. A recent case
study on yarn manufacturing noted that energy
costs vary by raw material and process: for
20-tex carded open-end cotton yarn, energy costs
range from 5-18 % of total mill costs, while
ring-spinning and rotor-spinning lines can reach
10-25 % (Branchetti et al., 2019). The same study
emphasised the importance of separating auxiliary
energy uses (e.g., compressors) from production
consumption to create meaningful benchmarks..
Proper maintenance of compressed-air networks
is crucial, as leaks and idle operation can waste
energy.

Lighting, office equipment and miscellaneous
general uses account for 2 %. Though relatively
small, adopting LED fixtures and occupancy
sensors can yield quick savings. The total losses
slice (4 %) represents energy lost as heat in motors,
transformers and distribution systems. Regular
servicing and upgrading to high-efficiency motors
can help reduce these losses.

Overall, the chart highlights that most energy
is consumed on the production floor, with sizeable
shares devoted to HVAC and compressed air.
Literature on textile-sector energy use recommends
collecting detailed consumption data, segregating
production and auxiliary loads, and benchmarking
against best-practice factories to identify
improvement opportunities, for a plant producing
both polyester and cotton yarn, monitoring how
each fibre type influences machine settings and
energy demand can inform targeted efficiency
measures.

C. Energy Performance Indicator

The line chart tracks the Energy Performance
Indicator (EnPI) for the yarn-spinning plant
over January 2022 — December 2023. The EnPI
measures the electric energy consumed per
kilogram of yarn (kWh /kg).

Energy Perfarmance Indicator (kWh/kg)

I TP B T
P

DNPRPD DD ED DD
Bl A

R A S RO L
FFE S I P

Figure 4. Energy Performance Indicator in kWh per
kilogram

The EnPlI hovers around 3.9 kWh /kg,
peaking at ~4.1 kWh /kg in May 2022. A gradual
decline occurs, with specific energy consumption
dropping below 3.8 kWh /kg by March 2023. The
indicator briefly rises above 3.9 kWh /kg in May
2023 before plunging to =3.4 kWh /kg by July
2023, suggesting either a temporary improvement
in energy efficiency (e.g., equipment upgrades
or a shift toward lower-energy polyester yarn) or
reduced production.

After the dip, energy intensity climbs steadily,
reaching ~4.0 kWh /kg by December 2023, likely
reflecting increased production of finer or combed
cotton yarns that require more energy to spin.
Overall, the EnPI fluctuates within a relatively
narrow band (=3.4-4.1 kWh /kg), indicating that
the plant maintains consistent control over its
energy use per unit of product. However the chart
shows a downward trend during year 2022 till
2023.

D. Energy Baseline
We use the linest function of Excel to
determine the base line fitted model as :

y=2.804SPG10+11.137SPG9+1.201SPG8+0.837
ST2+4.825J20-3.941CT—5.6255T1+4,458,439
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Table 1. Linest Table

SPG10 SPG9 SPG8 ST2 J20 CT ST1 b
m, 2.804 11.137 1.201 837 4.825 (3.941) (5.625) 4.458.439
SE, 7.078 7.558 2.576 3.851 937 16.233 11.518 2.262.648
R,|SE 96% 286.117 #N/A #N/A #N/A #N/A #N/A #N/A
F stat | df 14,7 4 #N/A #N/A #N/A #N/A #N/A #N/A
SSSS}]{E‘ 8.402.012.143.247  327.452.682.260 #N/A #N/A #N/A #N/A #N/A #N/A
o 0,396 1,474 0,466 0,217 5,150 (0,243) (0,488) 1,970
P arne 0,712 0,215 0,665 0,839 0,00675 0,82 0,651 0,120

To assess whether the regression model is
significant, we compute the p-value associated
with the F-statistic. The p-value is the probability
of obtaining a value as extreme as the observed
F under the null hypothesis that all coefficients
(except the intercept) are zero. It is calculated from
the F(df , df)) distribution:

p—ralue=1- Fﬂl'l'_fl:FDbS-' dfl, dfz:l ....... 2)

Where F . is the cumulative distribution
function of the F-distribution. The LINEST table
provided coefficients, standard errors, R2?, the
F-statistic, degrees of freedom and sums of squares.
Using the F-statistic (14.7) and the degrees of
freedom (7 and 4) we computed an overall model
p-value of = 0.01035, showing that the regression
is statistically significant and unlikely to have
arisen by chance. For each coefficient, t-statistics
and two-tailed p-values were calculated using the
standard errors. Only variable 5 was significant (p
~ 0.0067); all other predictors and the intercept
had p-values > 0.05 and hence did not demonstrate
individual significance in this small sample.

RESULTS AND DISCUSSION
A. EnPI Benchmark

A self-analysis of European yarn factories
reported electrical SEC values ranging 1.4—
14.5 kWh /kg with an average of 5.6 kWh /kg.
Cotton-based mills generally consume ~2.4 kWh /
kg, whereas wool-based mills can exceed 10 kWh /
kg (Branchetti et al., 2019). The plant’s EnPI
(=3.44.1 kWh /kg) lies within this typical range
and suggests moderate energy intensity given its
polyester/cotton mix as depicted in figure 3.

A 2024 case study on combed ring spinning
found monthly SEC values of 3.23-3.76 kWh /kg,

and measured 3.32 kWh /kg for 20-tex combed
ring yarn; literature values ranged 3.49-3.62
kWh /kg. These benchmarks are comparable to the
mid-range values observed in the chart. Research
shows that finer yarns and weaving yarns (which
require more twist) consume more energy, while
combed yarns use more energy because of the
additional combing step. This explains why the
EnPI climbs again toward the end of 2023 possibly
due to a higher share of combed or fine-count
cotton yarns.(Koc & Kaplan, 2007)

Spinning as the primary energy consumer:
In cotton textile processing, spinning accounts
for 93 % of electric energy use, with typical SEC
values of 3.24-3.47 kWh /kg for yarn spinning
plants. Auxiliary processes (warping, weaving,
wet processing) use much less energy (Palamutcu,
2010), so fluctuations in the EnPI largely reflect
the efficiency of spinning machines and the type
of yarn being produced.

Comparing the plant’s EnPI with the ranges
reported in the literature (3.23-3.76 kWh/kg for
ring-spun cotton yarn and 3.24-3.47 kWh/kg
for general yarn spinning shows that the plant
is performing within or slightly above typical
benchmarks. Continuous monitoring and analysis
can help identify opportunities to further reduce
energy intensity.(Koc & Kaplan, 2007; Palamutcu,
2010)

In summary, the chart reveals a well-controlled
energy performance indicator that aligns with
documented values from Scopus-indexed studies.
Variations across months likely reflect changes
in yarn type, production volume, and equipment
efficiency, underscoring the importance of
detailed energy tracking and targeted process
improvements.
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B. Multi-Linear Regression for Energy

Baseline Modeling

For the yarn facility, 12 months of 2022 data
were used to train a multi-linear regression with
the seven production line outputs as predictors.
This baseline period was chosen to span a full year,
capturing seasonal or operational variability. The
regression fitting would have involved checking
the statistical significance of each term, ensuring
the model adequately explains consumption
(typically via R? and error analysis). The resulting
model (given above) indicates how many kWh
are consumed per kg of product from each line,
on average, plus a large constant term capturing
baseline fixed consumption. Such modeling of
industrial energy use through multiple regression is
supported in the academic literature. For instance,
Abourriche et al. (2025) used multiple linear
regression to correlate a confectionery plant’s
electricity consumption with production volume
and other factors, yielding a predictive model for
energy use (Abourriche et al., 2025). Similarly,
Maaouane et al. (2021) modeled industrial energy
demand based on output of goods using a multi-
linear regression approach(Grimaldo-Guerrero et
al., 2021). These studies underscore that regression
analysis is a common and validated technique
for energy baseline modeling in manufacturing
settings.

The baseline model was developed using
multiple linear regression (equation 3) on data
from January 2022 to December 2022 (the
baseline period), relating monthly energy use (in
kWh) to production volumes (in kg) from seven
production lines. The multi linear regression
shows correlation between energy consumption in
kwh and production of seven line of cotton and
polyester yarn consist of cotton line (CT, SPG-9),
polyester (ST1, ST2, SPG-8, SPG-10) and blended
polyester and cotton (J20).

Under the ISO 50006 framework for energy
baselines, multiple relevant drivers (here, yarn
outputs) require a model to normalize energy use.
Each term’s coefficient can be interpreted as an
energy intensity for that product: e.g., “2.804 kWh
per unit of SPG10” etc. Large positive coefficients
imply that yarn type demands more power in
production. For example, SPG-9 (a cotton yarn)
has the highest positive coefficient, consistent

with the literature that finer cotton spinning
can consume large amounts of electricity. The
negative coefficients (for CT and STI1) are
counterintuitive if considered in isolation, but
likely reflect interdependence among production
levels (multicollinearity): when CT or ST1 output
increases, other high-energy processes may
decrease, yielding a net negative coefficient. In
practice, these coefficients should be viewed in the
context of the full model rather than as standalone
energy “savings.” The intercept (=4.46 million
kWh) represents the fixed base energy — auxiliary
loads and machine idling — which literature terms
the base energy consumption (the portion not
related to production) (Palamutcu, 2010).

The model’s overall fit quantifies how well
production changes explain energy variation. High
goodness-of-fit (R?) would indicate that most
energy use moves in step with production volumes.
(If R? were low, it would imply other unmeasured
factors or inconsistent operations dominate,
making baseline adjustments harder.) In this case
the choice of seven production variables suggests
the model was needed to account for mixed-
product effects. As ISO 50006 notes, using such
a multivariate model avoids misleading simple
comparisons: e.g. if the product mix changes year-
on-year, a raw drop in kWh might simply reflect
different production rather than true efficiency
gains. By contrast, this regression explicitly
quantifies each product’s energy contribution,
enabling a normalized baseline that accounts for
output variations.

Taken together, the statistics table 1 tell us
how well the production data explain energy use. A
high R? (e.g. above 0.7) and significant F indicate
the model fits well. The standard error S measures
the prediction accuracy: a small S relative to the
typical energy values means good fit. Large SSR
vs small SSE reinforces a strong model (explained
variation >> unexplained). However, if R? is
modest or S is large, there is substantial random
error or other factors affecting energy. Ultimately,
the LINEST output shows both the magnitude of
each line’s impact (via slopes) and the reliability
of those estimates (via SE, t, p).

Lines with large positive slopes and small
p-values are key drivers of energy use. For example,
if ST2 and SPG8 have high coefficients that are
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statistically significant, they contribute heavily to
total energy. Improving energy efficiency on those
lines (better machinery, process controls, etc.) will
have the greatest payoff. Lines with insignificant
coefficients may be lower priority since their
output is not strongly tied to energy use. If
polyester lines show consistently higher impacts,
then optimizing polyester production is critical.
For instance, implementing waste-heat recovery
or more efficient motors on polyester spinning
might yield large energy savings. Cotton lines
might already be relatively efficient; if not, check
if their processes can be tuned. Blend line (J20)
strategies would depend on whether its impact is
closer to cotton or polyester.

The model can inform operational decisions. If
energy is constrained, shifting production toward
lines with lower energy coefficients (if flexible)
could reduce consumption. Conversely, lines with
high coefficients should be scheduled carefully or
run at optimal loads. In summary, each statistic in
the LINEST output has a clear meaning: slopes
quantify per-line energy impact , p-values/t-stats
show which impacts are reliable, and R, F, SSR/
SSE, S tell us how well production explains energy
use. By interpreting these together, we identify
which yarn lines (and hence which materials)
are driving energy consumption and can focus
optimization efforts accordingly.

C. Energy Baseline and Actual

Figure 5 shows that the plant’s actual electricity
use closely tracks the regression baseline. For
most months, the solid actual consumption line
stays very near the dotted baseline, indicating
that the model’s predicted values match reality
reasonably well. In other words, given the
production volumes on each line, the baseline
model provides a good expectation of how much
energy should be used, and actual usage generally
falls in line with that expectation. This suggests
that production output is indeed a strong driver of
energy consumption at the facility, and the model
captures those relationships effectively. Minor
month-to-month fluctuations between the actual
and predicted lines are expected, but there is no
persistent large divergence for most of the period.
This typically reflects a high goodness-of-fit for the
regression model (in practical terms, likely a high

R?, meaning the model explains a large portion
of the variation in energy use). The baseline thus
serves as a reliable yardstick for “normal” energy
consumption given the production levels.

Baseline and Actual Energy (KWh]
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Figure 5. Energy baseline and actual chart

The time-series chart juxtaposes baseline
consumption (the model-based reference) against
actual usage. Typically, one would use the 2022
data to calibrate the model and then project a “2023
baseline” by plugging actual 2023 production into
the regression. Comparing that baseline prediction
to the measured 2023 energy reveals performance.
If the actual energy curve lies below the baseline
curve, the plant has consumed less energy than
expected for its production level — indicating
energy savings or efficiency improvement.
Conversely, actual values above baseline suggest
worse-than-expected performance.

D. Performance and Savings

Quantitatively, energy savings can be
expressed as the difference between baseline and
actual, or as a percentage change. For example,
the ISO 50006 guidance describes an “EnPI
difference” metric (BSI Standards Publication
Energy Management Systems-Measuring Energy
Performance Using Energy Baselines (EnB) and
Energy Performance Indicators (EnPl)-General
Principles and Guidance, 2015):

Energy savings (difference) = Baseline EnPI —
Actual EnPI.................. 4)

Energy savings (%) = [(Baseline — Actual) /
Baseline]x100..........coovviiiiiiiiieenn, &)

In our context, using the regression, one
would compute the expected kWh for 2023 at
2022 baseline conditions and compare to actual
kWh in 2023. A persistent gap as shows in figure 6
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(baseline higher than actual) signifies cumulative
savings.

Baseline and Actual EnPI (kWh/kg)
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Figure 6. Baseline and Actual EnPI

This approach is analogous to M&V practices
in industry: regression models are often used to
isolate savings by holding production constant.
Without such normalization, attributing energy
changes to efficiency versus production shifts
would beunreliable. As Amundson et al. emphasize,
one must “distinguish the effects of improvements
from changes in production” using models, or
evaluations will be questioned (Amundson et al.,
n.d.). The cumulative savings during the year 2023
period shows energy savings improvement equal
to 18 GWh or 7,48% compared to baseline.

CONCLUSION

As a conclusion, we have several key insights
for energy efficiency focus and verification. First,
the model validates which yarn processes drive
energy use. Managers can focus conservation
efforts on the highest-intensity products (e.g. those
with large positive coefficients) and on reducing
the base load. Second, the baseline comparison
provides a transparent benchmark. By plotting
actual vs. baseline, the company can see seasonal or
operational deviations. For instance, if an efficiency
measure was implemented in spring 2023, the
chart would show actual consumption dipping
below baseline afterwards, quantifying saved
kWh. Over long periods, one can track whether
efficiency targets (like a percent reduction) are met.
Third, normalizing energy to production (often
expressed as kWh per unit yarn) can be computed
from the model. Declining energy-per-unit year-
over-year (even if production grows) is a clear sign

of improved performance. As Cerdancova et al.
observed in a similar textile case study, energy use
typically “shows a close connection” to output; this
regression lets one factor out that link and examine
efficiency gains beyond production-driven changes
(Cerdancova et al., 2021).

In summary, the regression-based baseline
model explains the bulk of year-to-year energy
variation through changes in product mix and
volume. It enables a fair comparison of “apples-
to-apples” energy use, so that actual vs. baseline
differences legitimately reflect operational
performance. When the actual 2023 curve deviates
downward from the baseline line, the manufacturer
has demonstrated saved energy. This methodology
— grounded in best practices for industrial energy
monitoring —ensures that energy savings claims are
defensible and tied to technical causes (Amundson
etal., n.d.).
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EnPI Energy Performance Indicator

MLR Multiple Linear Regression

SEC Specific Energy Consumption

SE Standard Error

SSR Regression Sum of Squares

SSE Error Sum of Squares

M&V Measurement and Verification
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