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ABSTRACT

Energy consumption in the yarn manufacturing industry is 
significant due to electricity‑intensive processes and auxiliary 
systems; energy intensity (kWh per kg of yarn) is a key 
indicator of efficiency and cost. To accurately evaluate savings 
from efficiency measures, the study developed a multiple 
linear regression (MLR) baseline model for a large polyester 
and synthetic yarn plant in West Java Indonesia. The model 
used historical 2022 data to relate energy use to production 
output and operational variables, enabling prediction of energy 
consumptionin the absence of improvements. Statistical 
analysis showed the regression was significant. The plant’s 
energy intensity averaged ~3.4–4.1 kWh/kg, which is moderate 
compared with European benchmarks. Using the model as an 
energy performance indicator (EnPI), the 2023 monitoring year 
data were compared to baseline predictions to verify savings. 
The comparison revealed that energy‑saving initiatives—such 
as improved motors and climate control—reduced actual 
energy use below the baseline, confirming real efficiency gains 
while accounting for factors like production level and weather. 
The case study demonstrates that MLR‑based EnPI baselines 
provide a robust framework for moni‑toring and verifying 
industrial energy savings and benchmarking performance.
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INTRODUCTION
Energy performance in the yarn industry 

has become a critical focus over the past 
decade, driven by sustainability goals and cost 
pressures. Synthetic yarns (primarily polyester, 
polypropylene, nylon, etc.) dominate global textile 
production, comprising roughly two-thirds of 
textile fibers (Palacios-Mateo et al., 2021).

Manufacturing these yarns is energy-intensive, 
consuming electricity and thermal energy at 
various stages from polymer production to fiber 
extrusion and spinning. Energy intensity, often 
expressed as energy use per unit of output (e.g. 
kilowatt-hours per kilogram of yarn, kWh/kg), 
is a key performance indicator for benchmarking 
efficiency and environmental impact. High energy 
intensity not only raises production costs but 
also correlates with significant greenhouse gas 
emissions (Demirdelen et al., 2023; Palacios-
Mateo et al., 2021)

Energy efficiency is a critical concern in 
the yarn manufacturing industry, not only for 
environmental reasons but also due to the significant 
share of energy in production costs. In typical yarn 
mills (e.g. spinning mills), energy costs can range 
from about 5–18% of total manufacturing costs 
(and even 10–25% in certain spinning processes) 
(Branchetti et al., 2019).

Reducing energy use through efficiency 
measures (such as installing efficient motors, 
improving climate control, etc.) can thus yield 
substantial cost savings. However, verifying these 
energy savings is challenging, because savings 
represent energy not used and cannot be measured 
directly (Medojevic et al., 2017).

A reliable approach is needed to quantify how 
much energy has been saved after an improvement, 
accounting for factors like production levels and 
weather that also affect consumption. This is 
where multiple linear regression (MLR) methods 
come into play. MLR-based models are widely 
used in industrial energy measurement and 
verification (M&V) to establish an energy baseline 
and validate savings against that baseline (Kelly 
Kissock & Eger, 2008) .

Yarn manufacturing (spinning) involves 
processes that are electricity-intensive, powering 
machinery like blowroom lines, carding machines, 

ring frames or rotors, winding machines, and 
extensive climate control (air conditioning and 
humidity control systems) to maintain fiber 
quality. A large portion of energy in a textile plant 
is consumed in the spinning stage – one analysis 
reported that spinning processes are responsible 
for approximately 93% of the total electricity 
consumption in the production of textile yarn.
(Branchetti et al., 2019).

The key drivers of energy consumption in a 
yarn factory include: (1) Production Output: The 
amount of yarn produced (e.g. in kilograms or yarn 
count) has a direct impact on energy use. Machines 
draw power roughly proportional to throughput, so 
higher production generally means higher energy 
consumption, (2) Machine Operating Parameters: 
Machine speeds, load factors, and utilization rates 
influence energy usage. For instance, running more 
spindles or higher spindle speeds will consume 
more electricity, (3) Auxiliary Systems: Supporting 
systems such as compressed air, lighting, and 
particularly climate control (humidification and 
air-conditioning) can draw substantial energy. In 
many spinning mills, the air conditioning/chiller 
plant is a major consumer (one case found ~80% 
of the specific energy consumption was from AC 
and chilling systems (Sakti et al., 2021). Ambient 
conditions (outside temperature and humidity) 
affect how hard these systems must work, (4) 
Raw Material or Process Differences: Different 
fiber types (cotton vs. synthetic blends) or process 
routes can have different energy profiles. For 
example, open-end (rotor) spinning tends to use 
less energy per kg of yarn than ring spinning (Koc 
& Kaplan, 2007), so a shift in product mix could 
influence total energy use.

All these factors cause normal fluctuations 
in a plant’s energy consumption. Thus, when an 
energy efficiency measure is implemented, simply 
comparing the utility bills “before vs after” can be 
misleading unless adjustments are made for these 
variables. A period of lower production or milder 
weather could appear as “savings” when in fact 
it’s due to external factors. To accurately verify 
savings, we need a baseline model that correlates 
energy use with the relevant independent variables 
(production, weather, etc.), and then use that model 
to predict what energy would have been used had 
no efficiency changes been made. Multiple linear 
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regression provides a robust statistical framework 
to build such a baseline model.

RESEARCH METHOD
Multiple linear regression (MLR) is a 

commonly used method for Measurement 
and Verification (M&V) of energy savings in 
industrial facilities. By modeling a plant’s energy 
consumption as a function of key operational 
variables (production output, operating conditions, 
etc.), MLR provides a baseline to compare what 
energy use would have been without efficiency 
measures against actual post-implementation 
usage. An MLR baseline model for a yarn factory 
can be expressed generically as:
E = β0 + β1 P1 + β2 P2 + β3 P3 +…+ ℇ  …………..(1)
where:
•	 E is the energy consumption over a certain 

period (e.g. kWh per day or per month).
•	 P1, P2, P3 is the production specific output in 

that period (e.g. kilograms of yarn produced).
•	 β0, β1, β2, β3 are the regression coefficients 

determined by fitting the model to historical 
data. 

•	 β0​ is the intercept (the model’s estimate 

of the energy use when all independent 
variables are zero), and β1, β2, β3, ... quantify 
how sensitive energy consumption is to 
each factor. For instance, β1 (coefficient on 
production) represents the incremental 
energy consumption per unit of production 
– effectively, how many kWh are needed 
for each additional kilogram of yarn output 
(Branchetti et al., 2019). β0​, the intercept, 
represents the base load or fixed energy use 
of the facility when production is zero (e.g. 
energy for lighting, idling equipment, or 
baseline HVAC needs).

•	 ϵ is the error term, accounting for random 
fluctuations and factors not captured by the 
model.

A.	 The Case Study
The plant choosen as the case study is 

located in West Jawa Indonesia is the largest 
plant in ASEAN producing differentiated 
polyester products for high‑value textiles. 
It started as a cotton spinning mill and later 
diversified into synthetic yarn and fibre 
production.

Figure 1. Typical Production Process (Sakti et al., 2021)

The yarn manufacturing process generally 
comprises eight sequential stages that convert raw 
fiber into finished yarn: (i) Mixing and Blowing: 
The process begins with the opening and blending 
of raw fibers sourced from multiple bales to 
achieve a homogeneous mix in line with product 
specifications. Using high-capacity mixing 
and blowing machines, compressed bales are 
opened, cleaned of contaminants, and thoroughly 
blended. This stage prepares the fibers into an 
aligned, continuous sheet (commonly referred to 
as a lap) for the subsequent process. (ii) Carding: 
During carding, the opened fibers are further 
individualized, combed, and aligned into a thin 
web, which is then condensed into a strand known 
as a sliver. Carding serves to straighten the fibers, 

remove residual impurities and short fibers, and 
produce a continuous sliver of predominantly 
parallel, longer fibers that provides the basis for 
uniform yarn quality. (iii) Drawing (Breaker Draw 
Frame): In the first drawing passage (breaker 
draw frame), multiple carded slivers are combined 
and drafted simultaneously. This drafting action 
attenuates the slivers while blending them and 
reducing variations in fiber mass per unit length. 
As a result, the breaker drawing stage markedly 
enhances sliver uniformity by averaging out 
thickness irregularities across the combined 
strand. (iv) Drawing (Finisher Draw Frame): The 
partially drawn sliver from the breaker stage is 
then processed through a second drawing passage, 
the finisher draw frame. Here, additional drafting 
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uniform yarn quality. (iii) Drawing (Breaker Draw 
Frame): In the first drawing passage (breaker draw 
frame), multiple carded slivers are combined and 
drafted simultaneously. This drafting action 
attenuates the slivers while blending them and 
reducing variations in fiber mass per unit length. 
As a result, the breaker drawing stage markedly 
enhances sliver uniformity by averaging out 
thickness irregularities across the combined 

strand. (iv) Drawing (Finisher Draw Frame): The 
partially drawn sliver from the breaker stage is 
then processed through a second drawing passage, 
the finisher draw frame. Here, additional drafting 
and auto-leveling are applied to further improve 
evenness. This stage yields a highly uniform sliver 
with consistent linear density (weight per unit 
length), which is appropriate for the ensuing 
spinning operations. (v) Speed Frame (Roving): 
The uniform sliver is subsequently fed into the 
speed frame (roving frame), where it is further 
attenuated and imparted with a slight twist to form 
roving. Roving constitutes a relatively thick, low-
twist intermediate yarn that is wound onto 
bobbins. This step provides the strand with 
sufficient strength and reduced thickness to 
withstand handling in the final spinning stage 
without excessive breakage. (vi) Ring Spinning 
(Ring Frame): In the ring spinning stage, the 
roving is converted into fine yarn. The roving is 
continuously drawn to the desired fineness in the 
ring frame and subjected to a higher degree of 
twist to generate a strong, coherent yarn. The spun 
yarn is then wound onto small bobbins known as 
cops. At this point, the yarn attains its specified 
count (fineness) and mechanical strength. (vii) 
Winding: Following spinning, yarn from multiple 
cops is rewound and consolidated onto larger 
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and auto-leveling are applied to further improve 
evenness. This stage yields a highly uniform 
sliver with consistent linear density (weight per 
unit length), which is appropriate for the ensuing 
spinning operations. (v) Speed Frame (Roving): 
The uniform sliver is subsequently fed into the 
speed frame (roving frame), where it is further 
attenuated and imparted with a slight twist to form 
roving. Roving constitutes a relatively thick, low-
twist intermediate yarn that is wound onto bobbins. 
This step provides the strand with sufficient strength 
and reduced thickness to withstand handling in the 
final spinning stage without excessive breakage. 
(vi) Ring Spinning (Ring Frame): In the ring 
spinning stage, the roving is converted into fine 
yarn. The roving is continuously drawn to the 
desired fineness in the ring frame and subjected 
to a higher degree of twist to generate a strong, 
coherent yarn. The spun yarn is then wound onto 
small bobbins known as cops. At this point, the 
yarn attains its specified count (fineness) and 
mechanical strength. (vii) Winding: Following 
spinning, yarn from multiple cops is rewound and 
consolidated onto larger packages, typically cones. 
The winding process often incorporates yarn 
clearing, during which defects and uneven portions 
are removed to ensure quality. By transferring 
the yarn onto cones, it is prepared in continuous 
lengths suitable for storage, transportation, and 
subsequent processes such as weaving or knitting. 
(viii) Steaming (Conditioning): In the final stage, 
the yarn packages are conditioned by exposure 
to steam in a controlled chamber to adjust and 
standardize their moisture content. Appropriate 
moisture conditioning is critical for maintaining 
yarn strength, flexibility, and weight consistency. 
The steam temperature and treatment duration 
are regulated according to the yarn’s material 
characteristics and count. This conditioning step 
stabilizes the yarn structure, mitigates brittleness 
and static buildup, and ensures that the final 
product complies with required quality standards 
for end use or commercialization.

After completing the eight main processes 
above, the finished yarn cones are packed for 
shipment according to customer requirements. 
Packaging methods include stacking cones on 
pallets, packing in neutral or branded cartons, 
or using sacks, ensuring the yarn is protected 

and delivered in the requested format. This final 
step, while outside the spinning process itself, 
is essential for preserving yarn quality during 
transport and handling.

Energy consumption breakdown in a textile 
spinning mill: (2a) overall plant energy by use, and 
(right) production process energy by machinery 
stage. As shown in the charts, the production 
machinery dominates the energy usage in the 
textile plant, accounting for about 74% of total 
power consumption. In comparison, auxiliary 
systems for climate control (air conditioning in the 
plant and a chiller for cooling) take up roughly a 
quarter of the energy (13% and 12% respectively), 
while lighting and office AC are minimal uses. 
This indicates that the manufacturing process 
itself is the primary driver of electricity costs, 
although environmental control is also significant 
in spinning mills (maintaining temperature and 
humidity is critical for yarn quality).

Figure 2a. Overall Plant Energy Use ((Sakti et al., 
2021))

Figure 2b. Typical SEU energy consumption 
distribution ((Sakti et al., 2021))
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Energy consumption breakdown in a textile 
spinning mill: (2a) overall plant energy by use, and 
(right) production process energy by machinery 
stage. As shown in the charts, the production 
machinery dominates the energy usage in the 
textile plant, accounting for about 74% of total 
power consumption. In comparison, auxiliary 
systems for climate control (air conditioning in the 
plant and a chiller for cooling) take up roughly a 
quarter of the energy (13% and 12% respectively), 
while lighting and office AC are minimal uses. 
This indicates that the manufacturing process 
itself is the primary driver of electricity costs, 
although environmental control is also significant 
in spinning mills (maintaining temperature and 
humidity is critical for yarn quality).

Within the production process segment, ring 
spinning is by far the most energy-intensive stage. 
According to the detailed breakdown, the ring 
spinning machines consume about 68% of the 
production-process energy — which equates to 
roughly half of the plant’s total energy alone. The 
high energy demand is due to the large number 
of spindles running at high speeds continuously, 
and the power needed to overcome friction (in 
rings, travelers, and spindles) and drive the yarn 
winding. In the given data, ring spinning’s energy 
usage vastly exceeds all other stages, identifying 
it as the primary target for energy efficiency 
improvements.

The carding department is the second most 
energy-consuming process, but at a much lower 
share than spinning. Carding accounts for about 
11% of the production-process energy (~8% of 
total plant energy). Carding involves heavy drums 
and motors (and suction for fiber dust), so it draws 
significant power, though its contribution is far 
less than that of ring spinning.

Other process stages such as winding 
(approximately 8% of production energy) and the 
yarn conditioning steamer (~6%) also consume 
notable portions. Winding machines (autoconers) 
require power for high-speed yarn winding and 
operate suction for cleaning yarn.

The steamer uses thermal energy (and electrical 
controls) to produce steam and maintain vacuum, 
explaining its moderate share. Meanwhile, the 
preparatory steps — speed frame, drawing, and 
blow room — are comparatively low in energy 

consumption, together only accounting for a few 
percent of the production energy. In the chart, the 
speed frame (roving) is ~3%, the two drawing 
frames total ~3%, and blow room just ~1%. These 
machines, though essential, have lower motor 
loads or operate intermittently, so their impact on 
the overall energy profile is small.

In summary, the energy usage profile highlights 
ring spinning as the dominant energy consumer, 
with carding as a distant second. Winding and 
steaming are mid-level consumers, and all other 
processes use relatively little energy individually. 
The facility’s utilities (air conditioning and 
chillers) also form a substantial secondary load. 
Therefore, any energy management efforts should 
focus first on the ring spinning frames, followed 
by carding and other significant machines, as well 
as optimizing the climate control systems.

B.	 Data Collection
Historical data of the plant’s production in 

2022 and 2023 was gathered. Data on production 
by different production line in the Spinning 
department (tons), total energy consumption of the 
plant (kWh/month) was collected. Based on these 
data, the SEC in each area was calculated.

Figure 3. Energy Consumption Distribution of the 
Plant

The donut chart shows how electricity 
is allocated across different systems in a 
yarn‑spinning facility. Production lines (spinning, 
winding and related equipment) account for about 
62 % of the plant’s energy consumption. This 
dominance is typical for textile mills: a study on 
cotton textile processing found that electricity 
makes up 93 % of the energy consumed in 
spinning and 85 % in weaving (Palamutcu, 2010), 
and that energy costs represent 8–10 % of total 
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vary by raw material and process: for 20‑tex 
carded open‑end cotton yarn, energy costs range 
from 5–18 % of total mill costs, while 
ring‑spinning and rotor‑spinning lines can reach 
10–25 % (Branchetti et al., 2019). The same study 
emphasised the importance of separating auxiliary 
energy uses (e.g., compressors) from production 
consumption to create meaningful benchmarks.. 
Proper maintenance of compressed‑air networks is 
crucial, as leaks and idle operation can waste 
energy. 

Lighting, office equipment and miscellaneous 
general uses account for 2 %. Though relatively 
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production cost. Polyester yarn production is 
similarly energy‑intensive because polymerisation 
and melt‑spinning require high temperatures and 
continuous machine operation.

The AHU (air‑handling unit) segment (15 %) 
reflects the need to control temperature and 
humidity. Cotton fibres are sensitive to moisture; 
maintaining relative humidity around 60–65 % 
prevents yarn breakage and static, so substantial 
energy is spent conditioning air. Chillers and 
air‑conditioning systems add another 10 %, 
illustrating that cooling is vital for both polyester 
and cotton lines to dissipate heat from high‑speed 
motors.

Compressed air systems, used for cleaning, 
pneumatic transport and actuating machinery, 
contribute 7 % of energy use. A recent case 
study on yarn manufacturing noted that energy 
costs vary by raw material and process: for 
20‑tex carded open‑end cotton yarn, energy costs 
range from 5–18 % of total mill costs, while 
ring‑spinning and rotor‑spinning lines can reach 
10–25 % (Branchetti et al., 2019). The same study 
emphasised the importance of separating auxiliary 
energy uses (e.g., compressors) from production 
consumption to create meaningful benchmarks.. 
Proper maintenance of compressed‑air networks 
is crucial, as leaks and idle operation can waste 
energy.

Lighting, office equipment and miscellaneous 
general uses account for 2 %. Though relatively 
small, adopting LED fixtures and occupancy 
sensors can yield quick savings. The total losses 
slice (4 %) represents energy lost as heat in motors, 
transformers and distribution systems. Regular 
servicing and upgrading to high‑efficiency motors 
can help reduce these losses.

Overall, the chart highlights that most energy 
is consumed on the production floor, with sizeable 
shares devoted to HVAC and compressed air. 
Literature on textile‑sector energy use recommends 
collecting detailed consumption data, segregating 
production and auxiliary loads, and benchmarking 
against best‑practice factories to identify 
improvement opportunities, for a plant producing 
both polyester and cotton yarn, monitoring how 
each fibre type influences machine settings and 
energy demand can inform targeted efficiency 
measures.

C.	 Energy Performance Indicator
The line chart tracks the Energy Performance 

Indicator (EnPI) for the yarn‑spinning plant 
over January 2022 – December 2023. The EnPI 
measures the electric energy consumed per 
kilogram of yarn (kWh /kg).

Figure 4. Energy Performance Indicator in kWh per 
kilogram

The EnPI hovers around 3.9 kWh /kg, 
peaking at ≈4.1 kWh /kg in May 2022. A gradual 
decline occurs, with specific energy consumption 
dropping below 3.8 kWh /kg by March 2023. The 
indicator briefly rises above 3.9 kWh /kg in May 
2023 before plunging to ≈3.4 kWh /kg by July 
2023, suggesting either a temporary improvement 
in energy efficiency (e.g., equipment upgrades 
or a shift toward lower‑energy polyester yarn) or 
reduced production.

After the dip, energy intensity climbs steadily, 
reaching ≈4.0 kWh /kg by December 2023, likely 
reflecting increased production of finer or combed 
cotton yarns that require more energy to spin.
Overall, the EnPI fluctuates within a relatively 
narrow band (≈3.4–4.1 kWh /kg), indicating that 
the plant maintains consistent control over its 
energy use per unit of product. However the chart 
shows a downward trend during year 2022 till 
2023.

D. Energy Baseline
We use the linest function of Excel to 

determine the base line fitted model as :
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To assess whether the regression model is 
significant, we compute the p‑value associated 
with the F-statistic. The p-value is the probability 
of obtaining a value as extreme as the observed F 
under the null hypothesis that all coefficients 

(except the intercept) are zero. It is calculated from 
the F(df1, df2) distribution: 
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Table 1. Linest Table

To assess whether the regression model is 
significant, we compute the p‑value associated 
with the F-statistic. The p-value is the probability 
of obtaining a value as extreme as the observed 
F under the null hypothesis that all coefficients 
(except the intercept) are zero. It is calculated from 
the F(df1, df2) distribution:

 …….(2)

Where Fcdf is the cumulative distribution 
function of the F-distribution. The LINEST table 
provided coefficients, standard errors, R², the 
F-statistic, degrees of freedom and sums of squares. 
Using the F-statistic (14.7) and the degrees of 
freedom (7 and 4) we computed an overall model 
p-value of ≈ 0.01035, showing that the regression 
is statistically significant and unlikely to have 
arisen by chance. For each coefficient, t-statistics 
and two-tailed p-values were calculated using the 
standard errors. Only variable 5 was significant (p 
≈ 0.0067); all other predictors and the intercept 
had p-values > 0.05 and hence did not demonstrate 
individual significance in this small sample.

RESULTS AND DISCUSSION
A.	 EnPI Benchmark

A self‑analysis of European yarn factories 
reported electrical SEC values ranging 1.4–
14.5 kWh /kg with an average of 5.6 kWh /kg. 
Cotton‑based mills generally consume ≈2.4 kWh /
kg, whereas wool‑based mills can exceed 10 kWh /
kg (Branchetti et al., 2019). The plant’s EnPI 
(≈3.4–4.1 kWh /kg) lies within this typical range 
and suggests moderate energy intensity given its 
polyester/cotton mix as depicted in figure 3.

A 2024 case study on combed ring spinning 
found monthly SEC values of 3.23–3.76 kWh /kg, 

and measured 3.32 kWh /kg for 20‑tex combed 
ring yarn; literature values ranged 3.49–3.62 
kWh /kg. These benchmarks are comparable to the 
mid‑range values observed in the chart. Research 
shows that finer yarns and weaving yarns (which 
require more twist) consume more energy, while 
combed yarns use more energy because of the 
additional combing step. This explains why the 
EnPI climbs again toward the end of 2023 possibly 
due to a higher share of combed or fine‑count 
cotton yarns.(Koc & Kaplan, 2007)

Spinning as the primary energy consumer: 
In cotton textile processing, spinning accounts 
for 93 % of electric energy use, with typical SEC 
values of 3.24–3.47 kWh /kg for yarn spinning 
plants. Auxiliary processes (warping, weaving, 
wet processing) use much less energy (Palamutcu, 
2010), so fluctuations in the EnPI largely reflect 
the efficiency of spinning machines and the type 
of yarn being produced.

Comparing the plant’s EnPI with the ranges 
reported in the literature (3.23–3.76 kWh/kg for 
ring‑spun cotton yarn and 3.24–3.47 kWh/kg 
for general yarn spinning shows that the plant 
is performing within or slightly above typical 
benchmarks. Continuous monitoring and analysis 
can help identify opportunities to further reduce 
energy intensity.(Koc & Kaplan, 2007; Palamutcu, 
2010)

In summary, the chart reveals a well‑controlled 
energy performance indicator that aligns with 
documented values from Scopus‑indexed studies. 
Variations across months likely reflect changes 
in yarn type, production volume, and equipment 
efficiency, underscoring the importance of 
detailed energy tracking and targeted process 
improvements.

SPG10 SPG9 SPG8 ST2 J20 CT ST1 b

mn 2.804 11.137 1.201 837 4.825 (3.941) (5.625) 4.458.439

SEn 7.078 7.558 2.576 3.851 937 16.233 11.518 2.262.648

R2 | SE y 96% 286.117 #N/A #N/A #N/A #N/A #N/A #N/A

F stat | df 14,7 4 #N/A #N/A #N/A #N/A #N/A #N/A
SSR | 
SSE 8.402.012.143.247 327.452.682.260 #N/A #N/A #N/A #N/A #N/A #N/A

t stat 0,396 1,474 0,466 0,217 5,150 (0,243) (0,488) 1,970

p value 0,712 0,215 0,665 0,839 0,00675 0,82 0,651 0,120
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B.	 Multi-Linear Regression for Energy 
Baseline Modeling
For the yarn facility, 12 months of 2022 data 

were used to train a multi-linear regression with 
the seven production line outputs as predictors. 
This baseline period was chosen to span a full year, 
capturing seasonal or operational variability. The 
regression fitting would have involved checking 
the statistical significance of each term, ensuring 
the model adequately explains consumption 
(typically via R² and error analysis). The resulting 
model (given above) indicates how many kWh 
are consumed per kg of product from each line, 
on average, plus a large constant term capturing 
baseline fixed consumption. Such modeling of 
industrial energy use through multiple regression is 
supported in the academic literature. For instance, 
Abourriche et al. (2025) used multiple linear 
regression to correlate a confectionery plant’s 
electricity consumption with production volume 
and other factors, yielding a predictive model for 
energy use (Abourriche et al., 2025). Similarly, 
Maaouane et al. (2021) modeled industrial energy 
demand based on output of goods using a multi-
linear regression approach(Grimaldo-Guerrero et 
al., 2021). These studies underscore that regression 
analysis is a common and validated technique 
for energy baseline modeling in manufacturing 
settings.

The baseline model was developed using 
multiple linear regression (equation 3) on data 
from January 2022 to December 2022 (the 
baseline period), relating monthly energy use (in 
kWh) to production volumes (in kg) from seven 
production lines. The multi linear regression 
shows correlation between energy consumption in 
kwh and production of seven line of cotton and 
polyester yarn consist of cotton line (CT, SPG-9), 
polyester (ST1, ST2, SPG-8, SPG-10) and blended 
polyester and cotton (J20). 

Under the ISO 50006 framework for energy 
baselines, multiple relevant drivers (here, yarn 
outputs) require a model to normalize energy use. 
Each term’s coefficient can be interpreted as an 
energy intensity for that product: e.g., “2.804 kWh 
per unit of SPG10” etc. Large positive coefficients 
imply that yarn type demands more power in 
production. For example, SPG-9 (a cotton yarn) 
has the highest positive coefficient, consistent 

with the literature that finer cotton spinning 
can consume large amounts of electricity. The 
negative coefficients (for CT and ST1) are 
counterintuitive if considered in isolation, but 
likely reflect interdependence among production 
levels (multicollinearity): when CT or ST1 output 
increases, other high-energy processes may 
decrease, yielding a net negative coefficient. In 
practice, these coefficients should be viewed in the 
context of the full model rather than as standalone 
energy “savings.” The intercept (≈4.46 million 
kWh) represents the fixed base energy – auxiliary 
loads and machine idling – which literature terms 
the base energy consumption (the portion not 
related to production) (Palamutcu, 2010).

The model’s overall fit quantifies how well 
production changes explain energy variation. High 
goodness-of-fit (R²) would indicate that most 
energy use moves in step with production volumes. 
(If R² were low, it would imply other unmeasured 
factors or inconsistent operations dominate, 
making baseline adjustments harder.) In this case 
the choice of seven production variables suggests 
the model was needed to account for mixed-
product effects. As ISO 50006 notes, using such 
a multivariate model avoids misleading simple 
comparisons: e.g. if the product mix changes year‐
on‐year, a raw drop in kWh might simply reflect 
different production rather than true efficiency 
gains. By contrast, this regression explicitly 
quantifies each product’s energy contribution, 
enabling a normalized baseline that accounts for 
output variations.

Taken together, the statistics table 1 tell us 
how well the production data explain energy use. A 
high R² (e.g. above 0.7) and significant F indicate 
the model fits well. The standard error S measures 
the prediction accuracy: a small S relative to the 
typical energy values means good fit. Large SSR 
vs small SSE reinforces a strong model (explained 
variation >> unexplained). However, if R² is 
modest or S is large, there is substantial random 
error or other factors affecting energy. Ultimately, 
the LINEST output shows both the magnitude of 
each line’s impact (via slopes) and the reliability 
of those estimates (via SE, t, p).

Lines with large positive slopes and small 
p-values are key drivers of energy use. For example, 
if ST2 and SPG8 have high coefficients that are 
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statistically signifi cant, they contribute heavily to 
total energy. Improving energy effi  ciency on those 
lines (better machinery, process controls, etc.) will 
have the greatest payoff . Lines with insignifi cant 
coeffi  cients may be lower priority since their 
output is not strongly tied to energy use. If 
polyester lines show consistently higher impacts, 
then optimizing polyester production is critical. 
For instance, implementing waste‑heat recovery 
or more effi  cient motors on polyester spinning 
might yield large energy savings. Cotton lines 
might already be relatively effi  cient; if not, check 
if their processes can be tuned. Blend line (J20) 
strategies would depend on whether its impact is 
closer to cotton or polyester.

The model can inform operational decisions. If 
energy is constrained, shifting production toward 
lines with lower energy coeffi  cients (if fl exible) 
could reduce consumption. Conversely, lines with 
high coeffi  cients should be scheduled carefully or 
run at optimal loads. In summary, each statistic in 
the LINEST output has a clear meaning: slopes 
quantify per‑line energy impact , p‑values/t‑stats 
show which impacts are reliable, and R², F, SSR/
SSE, S tell us how well production explains energy 
use. By interpreting these together, we identify 
which yarn lines (and hence which materials) 
are driving energy consumption and can focus 
optimization eff orts accordingly.

C. Energy Baseline and Actual
Figure 5 shows that the plant’s actual electricity 

use closely tracks the regression baseline. For 
most months, the solid actual consumption line 
stays very near the dotted baseline, indicating 
that the model’s predicted values match reality 
reasonably well. In other words, given the 
production volumes on each line, the baseline 
model provides a good expectation of how much 
energy should be used, and actual usage generally 
falls in line with that expectation. This suggests 
that production output is indeed a strong driver of 
energy consumption at the facility, and the model 
captures those relationships eff ectively. Minor 
month‑to‑month fl uctuations between the actual 
and predicted lines are expected, but there is no 
persistent large divergence for most of the period. 
This typically refl ects a high goodness‑of‑fi t for the 
regression model (in practical terms, likely a high 

R², meaning the model explains a large portion 
of the variation in energy use). The baseline thus 
serves as a reliable yardstick for “normal” energy 
consumption given the production levels.

Figure 5. Energy baseline and actual chart

The time‑series chart juxtaposes baseline 
consumption (the model‑based reference) against 
actual usage. Typically, one would use the 2022 
data to calibrate the model and then project a “2023 
baseline” by plugging actual 2023 production into 
the regression. Comparing that baseline prediction 
to the measured 2023 energy reveals performance. 
If the actual energy curve lies below the baseline 
curve, the plant has consumed less energy than 
expected for its production level – indicating 
energy savings or effi  ciency improvement. 
Conversely, actual values above baseline suggest 
worse‑than‑expected performance.

D. Performance and Savings
Quantitatively, energy savings can be 

expressed as the diff erence between baseline and 
actual, or as a percentage change. For example, 
the ISO 50006 guidance describes an “EnPI 
diff erence” metric (BSI Standards Publication 
Energy Management Systems-Measuring Energy 
Performance Using Energy Baselines (EnB) and 
Energy Performance Indicators (EnPI)-General 
Principles and Guidance, 2015):

Energy savings (diff erence) = Baseline EnPI –
Actual EnPI………………………….………  (4)

Energy savings (%) = [(Baseline – Actual) / 
Baseline]×100……………………..………….(5)

In our context, using the regression, one 
would compute the expected kWh for 2023 at 
2022 baseline conditions and compare to actual 
kWh in 2023. A persistent gap as shows in fi gure 6 
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2022 baseline conditions and compare to actual 
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6 (baseline higher than actual) signifies 
cumulative savings. 

 
 Figure 6. Baseline and Actual EnPI 

 
This approach is analogous to M&V practices 

in industry: regression models are often used to 
isolate savings by holding production constant. 
Without such normalization, attributing energy 
changes to efficiency versus production shifts 
would be unreliable. As Amundson et al. 
emphasize, one must “distinguish the effects of 
improvements from changes in production” using 
models, or evaluations will be questioned 
(Amundson et al., n.d.). The cumulative savings 
during the year 2023 period shows energy savings 
improvement equal to 18 GWh or 7,48% 
compared to baseline. 
 
CONCLUSION 
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(baseline higher than actual) signifi es cumulative 
savings.

Figure 6. Baseline and Actual EnPI

This approach is analogous to M&V practices 
in industry: regression models are often used to 
isolate savings by holding production constant. 
Without such normalization, attributing energy 
changes to effi  ciency versus production shifts 
would be unreliable. As Amundson et al. emphasize, 
one must “distinguish the eff ects of improvements 
from changes in production” using models, or 
evaluations will be questioned (Amundson et al., 
n.d.). The cumulative savings during the year 2023 
period shows energy savings improvement equal 
to 18 GWh or 7,48% compared to baseline.

CONCLUSION
As a conclusion, we have several key insights 

for energy effi  ciency focus and verifi cation. First, 
the model validates which yarn processes drive 
energy use. Managers can focus conservation 
eff orts on the highest-intensity products (e.g. those 
with large positive coeffi  cients) and on reducing 
the base load. Second, the baseline comparison 
provides a transparent benchmark. By plotting 
actual vs. baseline, the company can see seasonal or 
operational deviations. For instance, if an effi  ciency 
measure was implemented in spring 2023, the 
chart would show actual consumption dipping 
below baseline aft erwards, quantifying saved 
kWh. Over long periods, one can track whether 
effi  ciency targets (like a percent reduction) are met. 
Th ird, normalizing energy to production (oft en 
expressed as kWh per unit yarn) can be computed 
from the model. Declining energy-per-unit year-
over-year (even if production grows) is a clear sign 

of improved performance. As Cerdancova et al. 
observed in a similar textile case study, energy use 
typically “shows a close connection” to output; this 
regression lets one factor out that link and examine 
effi  ciency gains beyond production-driven changes 
(Cerdancova et al., 2021).

In summary, the regression‑based baseline 
model explains the bulk of year‑to‑year energy 
variation through changes in product mix and 
volume. It enables a fair comparison of “apples‑
to‑apples” energy use, so that actual vs. baseline 
diff erences legitimately refl ect operational 
performance. When the actual 2023 curve deviates 
downward from the baseline line, the manufacturer 
has demonstrated saved energy. This methodology 
– grounded in best practices for industrial energy 
monitoring – ensures that energy savings claims are 
defensible and tied to technical causes (Amundson 
et al., n.d.).
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  Figure 5. Energy baseline and actual chart 

  
The time-series chart juxtaposes baseline 

consumption (the model-based reference) against 
actual usage. Typically, one would use the 2022 
data to calibrate the model and then project a 
“2023 baseline” by plugging actual 2023 
production into the regression. Comparing that 
baseline prediction to the measured 2023 energy 
reveals performance. If the actual energy curve 
lies below the baseline curve, the plant has 
consumed less energy than expected for its 
production level – indicating energy savings or 
efficiency improvement. Conversely, actual 
values above baseline suggest worse-than-
expected performance. 

 
D. Performance and Savings 

Quantitatively, energy savings can be 
expressed as the difference between baseline and 
actual, or as a percentage change. For example, the 
ISO 50006 guidance describes an “EnPI 
difference” metric (BSI Standards Publication 
Energy Management Systems-Measuring Energy 
Performance Using Energy Baselines (EnB) and 
Energy Performance Indicators (EnPI)-General 
Principles and Guidance, 2015): 

Energy savings (difference) = Baseline EnPI 
–Actual EnPI………………………….………  
(4) 

Energy savings (%) = [(Baseline – Actual) / 
Baseline]×100……………………..………….(5) 

In our context, using the regression, one 
would compute the expected kWh for 2023 at 
2022 baseline conditions and compare to actual 
kWh in 2023. A persistent gap as shows in figure 
6 (baseline higher than actual) signifies 
cumulative savings. 

 
 Figure 6. Baseline and Actual EnPI 

 
This approach is analogous to M&V practices 

in industry: regression models are often used to 
isolate savings by holding production constant. 
Without such normalization, attributing energy 
changes to efficiency versus production shifts 
would be unreliable. As Amundson et al. 
emphasize, one must “distinguish the effects of 
improvements from changes in production” using 
models, or evaluations will be questioned 
(Amundson et al., n.d.). The cumulative savings 
during the year 2023 period shows energy savings 
improvement equal to 18 GWh or 7,48% 
compared to baseline. 
 
CONCLUSION 
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EnPI Energy Performance Indicator
MLR Multiple Linear Regression
SEC Specific Energy Consumption
SE Standard Error
SSR Regression Sum of Squares
SSE Error Sum of Squares
M&V Measurement and Verification
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