PERHITUNGAN EMISI GAS RUMAH KACA DARI SUMBER PEMBAKARAN TETAP

Oleh: Martono*)

ABSTRAK

Setelah pada tulisan sebelumnya tentang mengidentifikasi sumber emisi dan beban emisi sehingga mampu mengestimasi bahan bakar campuran dari data masing masing komponen dan cara mengkonversinya selanjutnya pada tulisan ini akan membahas bagaimana cara menghitung emisi Gas Rumah Kaca (GRK) dari Sumber Pembakaran Tetap.

1. Umum

Carbon dioxide, CH_4 , and N_2O dihasilkan sebagai hasil pembakaran. Formula umum dalam pembakaran sempurna adalah sebagai berikut:

$$C_x H_y O_z + \left(x + \frac{y}{4} - \frac{z}{2}\right) O_2 \rightarrow (x) CO_2 + \left(\frac{y}{2}\right)$$

Dimana:

x = koefisien stoikiometri untuk karbon;

y = koefisien stoikiometri untuk hidrogen; dan

z = koefisien stoikiometri untuk oksigen.

Untuk operasi industri minyak bumi, N_2O terbentuk selama pembakaran melalui rangkaian reaksi. Karena proses pembentukannya tergantung pada banyak faktor, emisi N_2O sangat bervariasi dari satu unit ke unit lainnya. Biasanya faktor faktor

mempengaruhi proses yang juga pembentukan N_2O akan berpengaruh terhadap proses pembentukan CH₄. CH₄ Emisi bervariasi terhadap tipe bahan bakar dan konfigurasi pembakaran.Secara keseluruhan, emisi CH₄ dan N₂O dari sumber pembakaran secara kuantitas lebih rendah emisi CO₂ (dalam bentuk CO₂e).

Dalam inventarisasi GRK, perlu dipahami akurasi data dalam perhitungan. Tingkat akurasi dari perhitungan emisi tergantung pada akurasi input data. Tabel dibawah ini menggambarkan pilihan-pilihan untuk estimasi GRK dan beberapa pertimbangannya.

Tabel 1.Pendekatan Estimasi Emisi – GRK dan Sumber Pertimbangan Khusus untuk Sumber Pembakaran

Types of Approaches	CO ₂ Emissions	CH ₄ , N ₂ O Combustion Emissions
	Based on "average" fuel carbon content	Based on "average" equipment characteristics
Published emission factors	Commodity fuels generally have consistent compositions	 Uncertainty is consistent with generally low contribution to overall emissions
Equipment manufacturer	 CO₂ emissions are related more to fuel type than equipment characteristics 	Emissions are closely related to equipment characteristics
emission factors	 Manufacturer published emission factors are based on engine type, air/fuel ratio, and fuel type 	

Types of Approaches	CO ₂ Emissions	CH ₄ , N ₂ O Combustion Emissions
Engineering calculations	 Highly reliable for many emission sources but dependent on methodology used and 	Limited application for oil and natural gas industry operations (e.g., flares)
Monitoring over a range of conditions and deriving emission factors	assumptions made May require detailed input data	
Periodic or continuous monitoring of emissions or parameters for calculating emissions	Generally not practical for oil and natural gas operations given the substantial number of emission sources	Not practical given the number of emission sources and the low contribution to overall emissions

2. Estimasi Konsumsi Bahan Bakar dari Data Energi Output atau Aliran Volumetrik

Estimasi konsumsi bahan bakar dari Data peralatan

Dalam hal pengukuran bahan bakar tidak tersedia, sehingga konsumsi perlu didekati dengan konversi output energi menjadi input energi yaitu dengan cara:

- Rating peralatan, HP aktual lebih bagus atau paling tidak HP yang tertera dari pabrik.
- Jam operasi. Jika jam operasi peralatan tersedia maka total jam operasi peralatan setahun dihitung dengan: menghitung emisi CO2 dari sumber pembakaran (tidak termasuk flares)

$$OT = \sum_{t=1}^{\# Months} \left(\frac{Total hours}{Month} \right)_{t=1}$$

dimana:

OT = annual operating time (hr/year).

Bila diketahui % runtime, maka persamaan diatas diubah menjadi

$$OT = \sum_{i=1}^{\# Months} \left(\frac{Default runtime}{100} \times \frac{Total hours}{Month} \right)_{i}$$

3. Efisiensi termal peralatan. Apabila peralatan memiliki karakteristik input energi per output energi (BTU/HP-hr). Satuan energi dapat berbeda untuk itu perlu konversi satuan energi yang digunakan dalam perhitungan.

4. Properti bahan bakar. Jenis bahan bakar apapun, yang diperlukan adalah nilai kalor dan kandungan karbon bahan bakar. Khusus untuk bahan bakar cair, densitas bahan bakar dibutuhkan untuk perhitungan. Nilai kalor yang digunakan dan properti bahan bakar harus memiliki efisiensi yang sama.

Penggunaan bahan bakar dapat dihitung pada dasar informasi peralatan tersebut dengan rumus :

$$FC = ER \times LF \times OT \times ETT \times \frac{1}{HV}$$

dimana:

FC = konsumsi bahan bakar tahunan (volume/tahun);

ER = tingkat peralatan (hp,kW, or J);

LF = faktor beban peralatan (fraksi);

OT = waktu operasi tahunan (hr/yr);

ETT = efisiensi peralatan termal $(BTU_{input}/hp-hr_{output}, BTU_{input}/kW-hr_{output},$ or $J_{input}/J_{output})$;

HV = nilai pemanasan bahan bakar (energy/volume).

Kadangkala faktor emisi dibuat dalam basis input energi sehingga persamaan diatas dihitung dengan:

$$E_{in} = ER \times LF \times OT \times ETT$$

dimana:

E_{in} = masukan energi (Btu, J);

ER = tingkat peralatan (hp, kW, or J);

LF = faktor beban peralatan (fraction);

Tabel 2 Konversi Energi Berdasar Jenis Generator

		Original Units		3	Converted Units		
			HHV Basis			LHV Basis	
Generator Type	Fuel Type	Btu/kW-hr	Btu/hp-hr	J (input)/ J (output)	Btu/kW-hr	Btu/hp-hr	J (input)/ J (output)
Advanced Combustion Turbine	Not Specified	9.289	6.927	2.722			
Advanced Gas / Oil Combined Cycle ³	Not Specified	6.752	5.035	1.979			
Advanced Gas / Oil Combined Cycle with Carbon Sequestration ²	Not Specified	8,613	6,423	2.524			
Biomass a	Not Specified	8,911	6,645	2.612			
Combined Heat and Power	Natural Gas	5.000 - 6.000	3.729 - 4.474	1.465 - 1.758	4.750 - 5.700	3.542 - 4.250	1.392 - 1.671
Combined Cycle Single Shaft	Natural Gas	8,952	9/9/9	2.624	8.057	800'9	2.361
Combined Cycle Steam Turbine with	Natural Gas	10,229	7,628	2.998	9,206	6,865	2.698
Conventional Combustion Turbine	Not Specified	10.833	8.078	3.175			
Conventional Gas / Oil Combined	Not Specified	7,196	5,366	2.109			
Distributed Generation - Baseload	Not Specified	9,200	6.860	2.696			
Distributed Generation - Peak	Not Specified	10,257	7,649	3.006			
Fuel Cells 3	Not Specified	7,930	5,913	2.324			
Gas Turbine	Liquefied Propane Gas	13,503	10,069	3.957	12,828	9,566	3.759
	Natural Gas	13,918	10,379	4.079	12,526	9,341	3.671
	Refunery Gas	15,000	11,186	4.396	13,500	10,067	3.956
Geothernal ²	Not Specified	35,376	26,380	10.368			
Integrated Coal-Gasification Combined Cycle ²	Not Specified	8,765	6,536	2.569			
Integrated Coal-Gasification Combined Cycle with Carbon Sequestration	Not Specified	10,781	8,039	3.160			
Internal Combustion Engine	Gasoline ⁴	9,387 (converted)	7,000 (original units)	2.751	8,918	059'9	2.614
	Natural Gas	10,538	7.858	3.088	9,484	7.072	2.780
	No. 2 Fuel Oil b	10,847	8,089	3.179	10,305	7,684	3.020
	Refinery Gas	14,000	10,440	4.103	12,600	9,396	3.693

Studi Kasus I: Perhitungan mengkonversi dari Energi Keluar ke Energi Masuk untuk Estimasi Emisi

Sebuah mesin pembakaran internal (IC) dengan bahan bakar bensin berdaya 100 HP dioperasikan selama 8000 jam pada beban 90% sselama setahun. Hitung input energi dalam satuan british dan SI/US berdasar HHV

Jawab:

Hitungan dalam satuan US/British. Output energi dikonversi dalam basis input energi menggunakan faktor konversi 7000 BTU/Hp-hr (Lihat tabel).

$$\begin{split} E_{\text{In, US}} &= 100 \text{ hp} \times 0.90 \times \frac{8000 \text{ hr}}{\text{yr}} \times \frac{7000 \text{ Btu}}{\text{hp-hr}} \\ E_{\text{In, US}} &= 5.04 \times 10^9 \text{ Btu/yr, HHV} \end{split}$$

Konversi untuk satuan SI adalah bentuk Joule (input)/Joule (output). Untuk mengkonversi output energi ke input energi pada satuan SI, daya (P) harus dikonversikan dahulu ke output energi.

$$P = 100 \text{ hp} \times 0.90 \times \frac{8000 \text{ hr}}{\text{yr}} \times \frac{2.68452 \times 10^6 \text{ J}}{\text{hp-hr}}$$

$$P = 1.933 \times 10^{12} \text{ J (output)/yr}$$

Kemudian basis output energi dikonversi ke dalam basis input energi dengan faktor konversi 2.751 J (input) / J (output) (HHV basis)

$$\begin{split} E_{\text{In, SI}} &= \frac{1.933 \times 10^{12} \text{ J (output)}}{\text{yr}} \times \frac{2.751 \text{ J (input)}}{\text{J (output)}} \\ E_{\text{In, SI}} &= 5.318 \times 10^{12} \text{ J (input)/yr (HHV)} \end{split}$$

Apabila input bahan bakar dinyatakan dalam basis volumetrik (contohnya scf/yr), kemudian faktor HHV dapat digunakan untuk mengkonversi laju volumetrik bahan bakar

Studi Kasus II : Perhitungan untuk Emisi Pembakaran Bahan Bakar dasar dengan Analisis Karbon yang tidak diketahui.

Gas alam dengan laju volumetrik 800 juta (10⁶) scf/year dibakar pada ruang bakar. Tanpa diketahui komposisi bahan bakar maupun nilai kalor yang diketahui hitung input energi dengan basis HHV Jawab : Laju volumetrik dikonversi menjadi laju input kalor dengan nilai HHV yang sesuai yaitu 1020 Btu/scf (untuk gas alam) dari tabel, jadi laju input kalor adalah:

$$\boldsymbol{E}_{\text{In}} = \frac{800 \times 10^6 \text{ scf}}{\text{yr}} \times \frac{1020 \text{ Btu}}{\text{scf}}$$

$$E_{In} = 8.16 \times 10^{11} \text{ Btu/yr (HHV)}$$

3. Konversi HHV dan LHV

Secara umum konversi HHV ke LHV mengikuti aturan bahwa LHV sekitar 5% lebih rendah untuk batu bara dan minyak, dan 10% lebih rendah untuk gas alam. Namun lebih resminya dengan formula oleh konvensi IPCC yaitu:

Untuk bahan bakar gas:

$$EF_{HHV} = EF_{LHV} \times \left(\frac{1-0.1}{1}\right)$$

dimana: EF = Faktor Emisi, massa atau dasar energi. Sedangkan untuk bahan bakar cair maupun padat:

$$EF_{HHV} = EF_{LHV} \times \left(\frac{1 - 0.05}{1}\right)$$

Studi Kasus III: Perhitungan untuk menkonversi LHV menjadi HHV

Faktor karbon gas alam cair adalah 17.5 kg C/GJ (17.5 tonne/1012 J) dengan basis LHV , konversikan faktor karbon ke faktor emisi CO₂ dalam tonnes/BTU pada basis HHV.. Jawab: Langkah pertama adalah mengkonversi faktor karbon ke HHV, dengan asumsi LHV bahan bakar cair adalah 5% dari HHV, maka konversinya sbb:

$$EF_{HHV} = \left(\frac{17.5 \ tonne \ C}{10^{12} \ J}\right)_{LHV} \times \left(\frac{1\text{-}0.05_{LHV}}{l_{HHV}}\right) = \left(\frac{16.63 \ tonne \ C}{10^{12} \ J}\right)_{HHV}$$

Faktor emisi karbon dikonversikan pada faktor emisi CO₂ dengan menggunakan BM senyawa dan faktor konversi seperti pada tabel konversi sebelumnya (Modul 3)

$$\begin{split} EF_{\text{CO}_2} &= \frac{16.63 \text{ tonne C}}{10^{12} \text{J}} \times \frac{1055.056 \text{ J}}{\text{Btu}} \times \frac{44 \text{ tonne CO}_2/\text{tonne-mole CO}_2}{12 \text{ tonne C/tonne-mole C}} \\ EF_{\text{CO}_2} &= 0.0643 \text{ tonnes CO}_2/10^6 \text{ Btu} \end{split}$$

4. Estimasi Emisi Pembakaran Bahan Bakar Berdasar Komposisi dan Penggunaan Bahan Bakar

Metode kesetimbangan massa merupakan salah satu metode yang handal untuk estimasi emisi dari sumber pembakaran stasioner. Kandungan karbon dari campuran bahan bakar merupakan rata-rata pembobotan dari komponen tiap kandungan karbon. Metode ini dimulai dengan menghitung % berat karbon dari tiap komponen bahan bakar. Hal ini diperoleh dengan mengalikan karbon dengan jumlah mol karbon dan membaginya dengan BM senyawa seperti formula dibawah ini:

$$Wt\%C_{c_{j}} = \frac{\frac{12 \text{ lb C}}{\text{lbmole C}} \times \frac{X \text{ lbmole C}}{\text{lbmole Cj}}}{MW_{c_{j}} \left(\frac{\text{lb}}{\text{lbmole}}\right)} \times 100\%$$

Dimana:

Wt% Cc_i = carbon content of individual hydrocarbon compound on a mass percent basis;

j = any hydrocarbon compound $C_xH_yO_z$ from Equation 4-1;

12 = berat molekul karbon

X = koefisien stoikiometri untuk karbon (contoh X=3 untuk pentane, C_3H_8);

MWc_xy = berat molekul senyawa hidrokarbon

Kandungan karbon dapat dihitung sbb:

$$Wt\%C_{Mixture} = \frac{1}{100} \times \sum_{i=1}^{\text{\# components}} (Wt\%_i \times Wt\%C_i)$$

dimana:

Wt% $C_{mixture}$ = carbon content of mixture, on mass percent basis;

 $Wt\%_i$ = weight percent of component i; and

Wt% C_i = carbon content of component i on a weight percent basis

Dalam perhitungan ini, dianggap reaksi dalam keadaan stoikiometris untuk menghasilkan CO₂.Sedangkan emisi CH₄ berdasar faktor emisi. Jadi emisi CO₂ dari bahan bakar gas dapat diperkirakan menjadi:

$$E_{\text{CO}_2} = FC \times \frac{1}{\text{molar volume conversion}} \times MW_{\text{Mischure}} \times Wt\% C_{\text{Mischure}} \times \frac{44}{12}$$

dimana:

 $E CO_2$ = emisi massa CO_2 (lb or kg);

FC = konsumsi bahan bakar (scf or m³);

Molar volume conversion = konversi dari volume mol ke massa (379.3 scf/lbmol or 23.685 m³/kgmole);

MW_{mixture} = berat molekul campuran;

 $\frac{44}{13}$ = konversi stiokiometri C ke CO₂

Sedangkan emisi CO₂ dari pembakaran bahan bakar cairan dapat dihitung dengan persamaan berikut (asumsi oksidasi 100%)

$$E_{CO_2} = FC \times D \times Wt\% C_{Mixture} \times \frac{44}{12}$$

dimana:

FC = konsumsi bahan bakar (gal or m³);

D = densitas bahan bakar (lb/gal or kg/m^3).

$$E_{CO_2} = FC \times Wt\% C_{Mixture} \times \frac{44}{12}$$

dimana: FC = konsumsi bahan bakar dalam unit massa (lb,kg,ton)

Studi Kasus IV: Perhitungan untuk Emisi Pembakaran Bahan Bakar dasar (BahanBakar Gas)

Gas alam sejumlah 800 juta (10⁶) scf/tahun dibakar dalam ruang bakar. Komposisi gas dari bahan bakar

diketahui dari pengukuran dan diberikan pada tabel berikut.Prosentase berat dari komponen bahan bakar dihitung dari komposisi molarnya. Hitung emisi CO₂ tahunan.

Tahap awal adalah menghitung emisi CO₂ adalah menghitung kandungan

karbon dari campuran bahan bakar. Kandungan karbon dari setiap penyusun senyawa dihitung sbb (contoh disini adalah etana/C₂H₆)

$$Wt\%C_{C_2H_6} = \frac{12 \text{ lb C}}{\text{lbmole C}} \times \frac{2 \text{ lbmoles C}}{\text{lbmole C}_2H_6} \times \frac{\text{lbmole C}_2H_6}{30 \text{ lb C}_2H_6} = \frac{0.8 \text{ lb C/lb C}_2H_6}{20 \text{ l$$

 $Wt\%C_{C,H_A} = 80\% C$

Tabel komposisi bahan bakar

	Mole %	MW	Wt% (Calculated)
CO_2	0.8	44	2.1
CH ₄	95.3	16	90.6
C_2H_6	1.7	30	3.0
C_3H_8	0.5	44	1.3
C_4H_{10}	0.1	58	0.3
N_2	1.6	28	2.7
Fuel Mixture	100	16.84	100.0

Perhitungan untuk Emisi Pembakaran Bahan Bakar (Gas alam)

Untuk menghitung emisi CO₂, konsumsi bahan bakar dikonversi ke basis massa dengan konversi volumetrik sebagaimana pada bab terhadulu. Dengan menggunakan BM dan kandungan karbon dari gas, dikonversikan massa gas yang dibakar ke massa karbon yang dibakar. Sehingga hitungan emisi sbb:

$$\begin{split} E_{CO_{2}} &= \frac{22 \times 10^{6} \text{ m}^{3} \text{ fixel}}{\text{yr}} \times \frac{10^{6} \text{ cm}^{3} \text{ fixel}}{\text{m}^{3} \text{ fixel}} \times \frac{\text{gmole fixel}}{23,685 \text{ cm}^{3} \text{ fixel}} \times \frac{17.4 \text{ g fixel}}{\text{gmole fixel}} \times \frac{76.2 \text{ g C}}{100 \text{ g fixel}} \times \frac{100 \text{ g fixel}}{\text{gmole fixel}$$

 $E_{co_2} = 45.157$ tonnes CO_2/yr

Untuk bahan bakar cair, maka metode perhitungan disini mengikutsertakan kandungan karbon bahan bakar, densitas dan nilai kalor

Studi Kasus V: Perhitungan untuk Emisi Pembakaran Bahan Bakar (Bahan Bakar Cair)

Bahan Bakar minyak Residual Oil (No.6 di tabel) sebanyak 4 juta (10⁶) gallon per tahun dibakar pada ruang bakar.Densitas residual oil adalah 8.3 lb/gallon, wt% carbon dari bahan bakar adalah 92.3% Hitung emisi CO₂

tahunan bila informasi detail bahan bakar diketahui/nilai default juga diketahui.

Jawab: Emisi CO₂ dihitung berdasar densitas dan kandungan karbon sbb:.

$$E_{co_2} = \frac{4 \times 10^6 \text{ gal fuel}}{\text{year}} \times \frac{8.3 \text{ lb fuel}}{\text{gal fuel}} \times \frac{92.3 \text{ lb C}}{100 \text{ lb fuel}} \times \frac{1 \text{ lbmole CO}_2}{1 \text{ lbmole C}} \times \frac{44 \text{ lb CO}_1}{\text{lbmole CO}_3} \times \frac{\text{tonnes}}{2204.62 \text{ lb}}$$

$$E_{co_2} = 50.966 \text{ tonnes CO}_3/\text{yr}$$

5. Estimasi Emisi Pembakaran Bahan Bakar Sumber Tetap Estimasi Emisi Berdasarkan

Komposisi Rata-Rata Bahan Bakar Apabila laju konsumsi bahan bakar di

fasilitas yang diketahui, sementara analisis kandungan kabron tersedia. faktor emisi berdasar komposisi rata rata bahan bakar dapat digunakan sebagai estimasi emisi pembakaran. Tabel dibawah ini adalah faktor emisi untuk tipe-tipe bahan bakar yang sering digunakan di operasi minyak bumi dan beberapa bahan bakar yang lain yang tidak umum. Faktor emisi CH₄ dan N₂O disediakan untuk pembakaran eksternal (boiler dan heater) serta pembakaran internal (mesin dan turbin).

Tabel 3 Faktor Emisi Pembakaran CO2(Berbasis Bahan Bakar) untuk Jenis Bahan Bakar Industri Umum

		arbon Emission Factor fr	Carbon Emission Factor from Original Source Document	CO ₂ Emission Factor *, b,	n Factor A.B.	CO ₂ Emission F	CO ₂ Emission Factor ^{a,b} , SI Units
				tonnes/106 Btu	tonnes/106 Btu tonnes /106 Btu tonnes /1012 J tonnes /1012 J	tonnes /1012 J	tonnes /1012 J
Fuel		Emission Factor	Source	(LHV)	(HHV)	(LHV)	(HHV)
Aviation Gas	18.87	MMTC/1015 Btu;	Table 6-1, EIA, 2008; Table A-34,	0.0728	0.0692	0.69	9.59
		Tg C/10 ¹⁵ Btu; kg C/MMBtu	EPA, 2009; Table 12.1, TCR, 2008.				
Bitumen	22.0	kg C/10° J (LHV)	Table 1.3, IPCC, 2007.	0.0851	60800	80.7	76.6
Coke	31.00	kg C/MMBtu	Table B-1, EPA, 2008; Table 12.1, TCR, 2008.	0.1199	0.1139	113.7	108.0
Coke (Coke Oven/Lignite/Gas)	29.2	kg C/10° J (LHV)	Table 1.3, IPCC, 2007.	0.1130	0.1073	107.1	101.7
Crude Oil	20.33	MMTC/10 ¹⁵ Btu; Tg C/10 ¹⁵ Btu; ke C/MMBtu	Table 6-1, EIA, 2008; Table A-34, EPA, 2009; Table 12.1, TCR, 2008.	0.0785	0.0745	74.4	7.07
Distillate Fuel (#1,2,4)	19.95	MMTC/10 ¹⁵ Btu or Tg C/10 ¹⁵ Btu;	Table 6-1, EIA, 2008; Table A-34, EPA, 2009; Table 12.1, TCR, 2008.	0.0770	0.0732	73.0	69.3
1.00		kg CMMBtu	4.11.4	20000	20000	3.00	000
Electric Utility Coal			Table 6-1, EIA, 2008.	0.0997	0.0947	2.5	8.68
	25.76	Tg X	Table A-35, EPA, 2009; Table 12.1, TCR, 2008.	0.0994	0.0945	94.2	89.5
Ethanol d		kg C/10° J (LHV)	Table 1.3. IPCC, 2007.	0.0747	0.0709	70.8	67.2
Flexicoker Low Btu Gas	278	Ib CO ₂ /10° Btu (LHV)	Petroleum Industry Data.	0.1261	0.1135	119.5	107.6
Fuel Oil #4		lb C/10° Btu	Derived from fuel property data in Table 3-8.	0.0802	0.0762	76.0	72.2
Gas/Diesel Oil	20.2	kg C	Table 1.3, IPCC, 2007.	0.0781	0.0742	74.1	70.4
Jet Fuel	19.33		Table 6-1, EIA, 2008; Table A-34, EPA, 2009; Table 12.1, TCR, 2008.	0.0746	60.000	70.7	67.2
Kerosene	19.72	MMTC/10 ¹⁵ Btu; Tg C/10 ¹⁵ Btu; kg C/MMBtu	Table 6-1, EIA, 2008; Table A-34, EPA, 2009; Table 12.1, TCR, 2008.	0.0761	0.0723	72.1	5.89
Lignite	26.30		Table 6-2, EIA, 2008; Table B-1, EPA, 2008; Table 12.1, TCR, 2008.	0.1015	0.0964	96.2	91.4
Liquefied Petroleum Gas		No Data	Table 6-1, EIA, 2008.	0.0656	0.0623	62.1	59.0
(LPG)	17.23	kg	Table B-1, EPA, 2008; Table 12.1, TCR, 2008.	0.0665	0.0632	63.0	59.9

Tabel 3 Faktor Emisi Pembakaran CO2 (Berbasis Bahan Bakar) ntuk Jenis Bahan Bakar Industri Umum,

				CO, Emission Factor 4, b	n Factor A. b.	CO, Emission Factor 4, b	n Factor 4, b
	•	arbon Emission Factor fr	Carbon Emission Factor from Original Source Document	US Units	nits	SIL	nits
				tonnes /106 Btu tonnes /106 Btu	tonnes /106 Btu	tonnes /1012 J	tonnes /1012 J
Fuel		Emission Factor	Source	(LHV)	(HHV)	(LHV)	(HHV)
Butane (normal)	17.71	MMTC/1015 Btu	Table 1-5, EIA, 2008.	0.0684	0.0649	64.8	61.5
	17.72	Tg C/10 ¹⁵ Btu; kg C/M/MBtu	Table A-42, EPA, 2009; Table 12.1, TCR, 2008.	0.0684	0.0650	64.8	61.6
Ethane	16.25	MMTC/10*15 Btu; Tg C/10*15 Btu; kg C/MMBtu	Table 1-5, EIA, 2008; Table A-42, EPA, 2009; Table 12.1, TCR, 2008.	0.0627	0.0596	59.4	56.5
Isobutane	17.75	MMTC/10 ¹⁵ Btu; Tg C/10 ¹⁵ Btu	Table 1-5, EIA, 2008; Table A-42, EPA, 2009.	0.0685	0.0651	64.9	61.7
Propane	17.20	MMTC/10 ¹⁵ Btu; Tg C/10 ¹⁵ Btu; kg C/MMBtu	Table 1-5, EIA, 2008; Table A-42, EPA, 2009; Table 12.1, TCR, 2008.	0.0664	0.0631	62.9	59.8
Miscellaneous Product ed		No Data	Table 6-1, EIA, 2008.	0.0785	0.0745	74.4	70.7
Motor Gasoline (Petrol)	19.33	MMTC/10 ¹⁵ Btu; Tg C/10 ¹⁵ Btu; kg C/MMBtu	Table 6-1, EIA, 2008; Table A-34, EPA, 2009; Table 12.1, TCR, 2008.	0.0746	0.0709	70.7	67.2
Naphtha (<401°F)	18.14	Tg C/10 ¹⁵ Btu; kg C/MMBtu	Table A-34, EPA, 2009; Table 12.1, TCR, 2008.	0.0700	0.0665	66.4	63.0
Nat. Gas Liquids	17.5	kg C/10° J (LHV)	Table 1.3, IPCC, 2007.	0.0677	0.0643	64.2	61.0
Natural Gas (Pipeline) ^g	14.47	MMTC/10 ¹⁵ Btu; kg C/MMBtu	Table 6-1, EIA, 2007; Table B-1, EPA, 2008; Table 12.1, TCR, 2008.	0.0590	0.0531	55.9	50.3
Natural Gas (Flared – 1,130 Btu/scf basis) ^k		No Data é	Table 6-1, EIA, 2008.	0.0608	0.0547	57.6	51.9
Other Bituminous Coal	25.8	kg C/10° J (LHV)	Table 1.3, IPCC, 2007.	8660.0	0.0948	94.6	6'68
Other Oil (>401°F)			Table A-34, EPA, 2009, Table 12.1, TCR, 2008.	0.0770	0.0732	73.0	69.3
Pentanes Plus	18.24	Tg C/10 ¹⁵ Btu; kg C/MMBtu	Table A-34, EPA, 2009; Table 12.1, TCR, 2008.	0.0704	0.0669	66.7	63.4
Petroleum Coke	27.85	MMTC/10 ¹⁵ Btu; Tg C/10 ¹⁵ Btu; kg C/MMBtu	Table 6-1, EIA, 2008; Table A-34, EPA, 2009; Table 12.1, TCR, 2008.	0.1075	0.1021	101.9	8.96
Refinery Gas	15.7	kg C/10° J (LHV)	Table 1.3, IPCC, 2007.	0.0607	0.0547	57.6	51.8

Tabel 4Faktor Emisi Pembakaran CH, dan N2O(Berbasis Bahan Bakar) untuk Jenis Bahan Bakar Industri Umum

	CH, Emission F	CH, Emission Factor ",	CH, Emissi	CH, Emission Factor ",	N2O Emission Factor	on Factor ",	N ₂ O Emiss	N2O Emission Factor '.
	tonnes /106 Btu	tonnes /106 Btu	tonnes /1012 J	tonnes /1012 J	tonnes /106 Btu	tonnes /106	tonnes /1012 J	tonnes /1012 J
Fuel	(LHV)	(HHV)	(LHV)	(HHV)	(LHV)	Btu (HHV)	(LHV)	(HHV)
Aviation Gasoline/Jet Gasoline	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Biogasoline	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Biodiesels	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Bitumen	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Coke Oven and Lignite Coke	1.06E-06	1.00E-06	1.00E-03	9.50E-04	1.58E-06	1.50E-06	1.50E-03	1.42E-03
Crude Oil	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Ethane	1.06E-06	1.00E-06	1.00E-03	9.50E-04	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Gas Coke	1.06E-06	1.00E-06	1.00E-03	9.50E-04	1.06E-07	1.00E-07	1.00E-04	9.50E-05
Gas/Diesel Oil	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Jet Gasoline	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Jet Kerosene	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	S.70E-04
Lignite	1.06E-06	1.00E-06	1.00E-03	9.50E-04	1.58E-06	1.50E-06	1.50E-03	1.42E-03
LPG	1.06E-06	1.00E-06	1.00E-03	9.50E-04	1.06E-07	1.00E-07	1.00E-04	9.50E-05
Motor Gasoline	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Naphtha	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Natural Gas	1.06E-06	9.50E-07	1.00E-03	9.00E-04	1.06E-07	9.50E-08	1.00E-04	9.00E-05
Natural Gas Liquids	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Other Biogas	1.06E-06	9.50E-07	1.00E-03	9.00E-04	1.06E-07	9.50E-08	1.00E-04	9.00E-05
Other Kerosene	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Other Liquid Biofuels	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Other Petroleum Products	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Other Primary Solid Biomass	3.17E-05	3.01E-05	3.00E-02	2.85E-02	4.22E-06	4.01E-06	4.00E-03	3.80E-03
Paraffin Waxes	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Petroleum Coke	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Residual Fuel Oil	3.17E-06	3.01E-06	3.00E-03	2.85E-03	6.33E-07	6.01E-07	6.00E-04	5.70E-04
Sub-Bituminous Coal	1.06E-06	1.00E-06	1.00E-03	9.50E-04	1.58E-06	1.50E-06	1.50E-03	1.42E-03
Wood/Wood Waste	3.17E-05	3.01E-05	3.00E-02	2.85E-02	4.22E-06	4.01E-06	4.00E-03	3.80E-03

Berikut contoh faktor emisi berbasis dengan pendekatan oksidasi 100%.

Studi Kasus VI : Perhitungan Pembakaran Emisi untuk Bahan Bakar Dasar (BahanBakar Cair) — Diketahui (diasumsikan) : hanya Higher Heating Value (HHV) dengan komposisi bahan bakar default. Sekitar 4 juta (10⁶) gallons per tahun residual fuel dibakar pada alat pembakaran. Hitung emisi CO₂, CH₄, N₂O tahunan

Jawab: Bila hanya jenis bahan bakar yang diketahui, faktor emisi dapat diperoleh dari tabel 3. Bila dihitung faktor emisi karbon untuk residual fuel oil adalah 21.49 MMTC/1015 Btu (10⁶ tonne C/1015 Btu) (HHV). Bila dikonversi menjadi faktor emisi CO₂ adalah:

$$\begin{split} EF_{CO_2} = & \frac{21.49 \ MMTC}{QBtu} \times \frac{10^6 \ tonne \ C}{MMTC} \times \frac{2204.62 \ lb \ C}{tonne \ C} \times \frac{QBtu}{10^{15} \ Btu} \times \frac{10^6 \ Btu}{MMBtu} \times \\ & \frac{lbmole \ C}{12 \ lb \ C} \times \frac{1 \ lbmole \ CO_2}{1 \ lbmole \ C} \times \frac{44 \ lb \ CO_2}{lbmole \ CO_2} \times \frac{tonne \ CO_2}{2204.62 \ lb \ CO_2} \end{split}$$

 $EF_{CO_3} = 0.0788$ tonnes $CO_2/10^6$ Btu (HHV)

Karena faktor emisi dalam basis energi, konsumsi bahan bakar harus dikonversikan ke konsumsi energi menggunakan nilai kalor atau kandungan energi untuk jenis bahan Jadi emisi CO₂ dihitung menggunakan data penggunaan bahan bakar, faktor emisi default dan nilai kalor default sbb:

$$E_{CO_2} = \frac{173.72 \text{ lb CO}_2}{10^6 \text{ Btu}} \times \frac{4 \times 10^6 \text{ gal fuel}}{\text{year}} \times \frac{\text{bbl fuel}}{42 \text{ gal fuel}} \times \frac{6.29 \times 10^6 \text{ Btu}}{\text{bbl fuel}} \times \frac{5.29 \times 10^6 \text{ Btu}}{\text{bbl fuel}} \times \frac{5.29 \times 10^6 \text{ Btu}}{\text{bbl fuel}} \times \frac{1.29 \times 10^6 \text{ Btu}}{\text{$$

 $E_{CO_2} = 47,204 \text{ tonnes CO}_2/\text{yr}$

Untuk emisi CH_4 , dan N_2O diperkirakan dari faktor emisi tabel 5.

$$\rm E_{\rm CH_4} = \frac{3.01\times10^6 \ tonne \ CH_4}{10^6 \ Btu} \times \frac{4\times10^6 \ gal \ fuel}{year} \times \frac{bbl \ fuel}{42 \ gal \ fuel} \times \frac{6.29\times10^6 \ Btu}{bbl \ fuel}$$

 $E_{CH_a} = 1.80 \text{ tonne CH}_4/\text{yr}$

$$E_{N_2O} = \frac{6.01 \times 10^{-7} \text{ tome N}_2O}{10^6 \text{ Btu}} \times \frac{4 \times 10^6 \text{ gal fuel}}{\text{year}} \times \frac{\text{bbl fuel}}{42 \text{ gal fuel}} \times \frac{6.29 \times 10^6 \text{ Btu}}{\text{bbl fuel}}$$

 $E_{N_2O} = 0.36$ tonne N_2O/yr

6. Estimasi Emisi Pembakaran Berbasis Peralatan untuk Sumber Tetap

Unit pembakaran eksternal

Gas alam sebanyak 800 juta (10⁶) scf/year dibakar pada boiler dengan NOx burner suhu rendah.Nilai kalor gas adalah 1032 Btu/scf (HHV).Hitung emisi CH₄ dan N₂O.

Jawab: Emisi metana dan N_2O dihitung dengan konversi kuantitas bahan bakar yang dibakar ke basis BTU dan dikalikan dengan hasil dari faktor emisi di tabel 4-7.

Studi Kasus VII: Perhitungan untuk Dasar Peralatan Emisi Pembakaran untuk Alat Pembakaran Eksternal

$$E_{CH_4} = \frac{800 \times 10^6 \ scf}{yr} \times \frac{1032 \ Btu}{scf} \times \frac{1.0 \times 10^6 \ tonne \ CH_4}{10^6 \ Btu} = \underbrace{0.83 \ tonnes \ CH_4/yr}_{}$$

$$E_{N_2O} = \frac{800 \times 10^6 \text{ scf}}{yr} \times \frac{1032 \text{ Btu}}{\text{scf}} \times \frac{2.8 \times 10^{-7} \text{ tonne } N_2O}{10^6 \text{ Btu}} = \underline{0.23 \text{ tonnes } N_2O/yr}$$

Suar Bakar (Flaring)

Suar bakar digunakan di beberapa industri migas unit untuk menghilangkan gas yang tidak bisa diambil kembali lewat pembakaran produk hidrokarbon dalam keadaan operasi rutin, gangguan ataupun darurat. Beberapa tipe suar bakar digunakan oleh industri mulai dari bukaan kecil pada ujung sumur sampai dengan suar vertikal yang dengan dilengkapi bantuan udara.Emisi CO2 dan N2O terbentuk sebagai produk pembakaran, sedangkan emisi CH4 dihasilkan dari pembakaran tidak sempurna. Kinerja suar bakar utamanya dipengaruhi oleh stabilitas nyala api yang juga tergantung dengan kecepatan keluar gas, diameter stack, kandungan kalor dan kondisi angin.

Perhitungan beban emisi pada unit flare dilakukan berdasarkan ketersediaan data (metode mendapatkan volume flaring). Oleh karenanya selain penerapan faktor emisi, penggunaan rumus-rumus di juga dapat diterapkan bawah (berdasarkan prinsip stoikiometric dan neraca massa) jika pada dasarnya flaring diketahui.Bilamana volume hidrokarbon pada outlet flare diketahui maka berlaku:

$$\begin{split} E_{CO_2} = & \left(HC \times CF_{BC} \times \frac{FE}{1 \text{-} FE} \times \frac{44}{12} \right) + M_{CO_2} \end{split}$$
 where
$$\begin{aligned} E_{CO_2} &= CO_2 \text{ mass emission rate;} \\ HC &= \text{flare hydrocarbon mass emission rate (from the flare);} \\ CF_{HC} &= \text{carbon weight fraction in hydrocarbon;} \\ FE &= \text{flare destruction efficiency;} \\ 44/12 &= C \text{ to } CO_2 \text{ conversion factor; and} \\ M_{CO_2} &= \frac{\text{mass of } CO_2 \text{ in flared stream based on } CO_2 \text{ composition of the stream.} \end{aligned}$$

Jika pengukuran emisi tidak tersedia, CO₂ emisi edari bakar suar didasarkan pada perkiraan efisiensi pembakaran 98% konversi gas suar bakar menjadi CO2 ,dan berlaku rumus:

$$\begin{split} & E_{\text{CO}_2} = \frac{\text{Volume}}{\text{flared}} \times \frac{\text{Molar volume}}{\text{conversion}} \times \text{MW CO}_2 \times \frac{\text{mass}}{\text{conversion}} \times \\ & \left[\sum \left(\frac{\frac{\text{mole Hydrocarbon}}{\text{mole gas}} \times \frac{A \text{ mole C}}{\text{mole Hydrocarbon}}}{\frac{0.98 \text{ mole CO}_2 \text{ formed}}{\text{mole C combusted}}} \right] + \frac{B \text{ mole CO}_2}{\text{mole gas}} \end{split} \right] \end{split}$$

Dimana:

```
Molar volume = conversion from molar volume to mass (379.3 sef/lbmole or conversion 23.685 m²/kgmole);

MW CO<sub>2</sub> = CO<sub>2</sub> molecular weight;

Mass conversion = tonnes/2204.62lb or tonne/1000 kg;

A = the number of moles of Carbon for the particular hydrocarbon;
```

B = the moles of CO₂ present in the flared gas stream.

Untuk emisi CH4 dari suar bakar, umumnya digunakan empiris 0.5% sebagai yang tidak terbakar dalam bentuk CH4 masih tersisa di gas suar bakar contoh di industri penyulingan minyak.Namun untuk suar bakar yang diproduksi karena memiliki variabilitas operasional yang lebih besar, maka emisi CH₄ diasumsikan bernilai 2% tidak terbakar.

Persamaan umum untuk estimasi emisi CH4 dari suar bakar adalah:

Untuk emisi N₂O bisa dikatakan sangat kecil dibandingkan emisi CO₂ dan dirumuskan sebagai :

$$E_{N_2O} = V \times EF_{N_2O}$$

where
 $E_{N_2O} = \text{emissions of N}_2O;$
 $V = \text{volume produced or refined (m}^3, \text{ sef, or bb); and}$
 $EF_{N_2O} = N_2O \text{ emission factor.}$

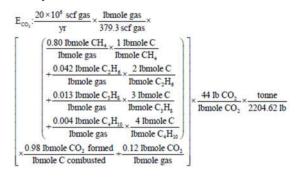
Tabel 5Faktor Emisi GRK untuk Gas Flare di Negara Berkembang

Flare Source				Emission	n Factors		
N. H. C.	co,	Uncertainty b	CH,	Uncertainty (%)	N ₂ O	Uncertainty (%)	Units
Flaring - gas production 6	1.2E-03	±25	7.6E-07	±25	2.1E-08	-10 to +1000	Gg/10 ⁶ m ³ gas production
Flaring - sweet gas processing	1.8E-03	±25	1.2E-06	±25	2.5E-08	-10 to +1000	Gg/10 m raw gas feed
Flaring - sour gas processing	3.6E-03	±25	2.4E-06	±25	5.4E-08	-10 to +1000	Gg/10 m raw gas feed
Flaring - conventional oil production	4.1E-02	±50	2.5E-05	±50	6.4E-07	-10 to +1000	Gg/10 ³ m ³ conventional oil production
Flaring - heavy oil/cold bitumen production	2.2E-02	±75	1.4E-04	±75	4.6E-07	-10 to +1000	Gg/10 ³ m ³ heavy oil production
Flaring - thermal oil production	2.7E-02	±75	1.6E-05	±75	2.4E-07	-10 to +1000	Gg/10 ³ m ³ thermal bitumen production
Flaring - refining d. e	No data	No data	0.189	No data	No data	No data	scf/10" bbl refinery feed
Units Converted to tonnes/10 ⁶ scf or	tonnes/1000 bb		0.102	110 data	aro data	210 4614	SCF10 Obliemely reed
Units Converted to tonnes/10s scf or	tonnes/1000 bb	1			n Factors	110 tana	Schio ouremery teed
	connes/1000 bb	Uncertainty b		Emissio Uncertainty	n Factors	Uncertainty b	Unit
Units Converted to tonnes/10 ⁶ sef or Flare Source		1	CH ₄ 2.2E-05	Emissio		Uncertainty b	
Units Converted to tonnes/10 ⁴ scf or Flare Source Flaring - gas production ⁶	co,	Uncertainty b (%)	CH ₄	Emissio Uncertainty (%)	n Factors	Uncertainty b	Units
Units Converted to tonnes/10s scf or	CO ₂ 3.4E-02	Uncertainty b (%) ±25	CH ₄ 2.2E-05	Emissio Uncertainty (%) ±25	N ₂ O 5.9E-07	Uncertainty b (%) -10 to +1000	Units tonnes/10° sef gas production
Units Converted to tonnes/10 ⁴ scf or Flare Source Flaring - gas production ⁶ Flaring - sweet gas processing	CO ₂ 3.4E-02 5.1E-02	Uncertainty b (%) ±25 ±25	CH ₄ 2.2E-05 3.4E-05	Emissio Uncertainty (%) ±25 ±25	N ₂ O 5.9E-07 7.1E-07	Uncertainty b (%) -10 to +1000 -10 to +1000	Units tonnes/10° sef gas production tonnes/10° sef raw gas feed
Units Converted to tonnes/10 ⁸ scf or Flare Source Flaring - gas production ⁶ Flaring - sweet gas processing Flaring - sour gas processing Flaring - conventional oil	CO ₂ 3.4E-02 5.1E-02 0.10	Uncertainty b (%) ±25 ±25 ±25	CH ₄ 2.2E-05 3.4E-05 6.8E-05	Emissio Uncertainty (%) ±25 ±25 ±25	N ₂ O 5.9E-07 7.1E-07 1.5E-06	Uncertainty (%) -10 to +1000 -10 to +1000 -10 to +1000	Units tonnes/10° sef gas production tonnes/10° sefraw gas feed tonnes/10° sefraw gas feed tonnes/10° bbl conventional oil production tonnes/10° bbl heavy oil production
Units Converted to tonnes/10 st scf or Flare Source Flaring - gas production st Flaring - sweet gas processing Flaring - sour gas processing Flaring - conventional oil production Flaring - heavy oil/cold bitumen	CO ₂ 3.4E-02 5.1E-02 0.10 6.5	Uncertainty b (%) ±25 ±25 ±25 ±25	CH ₄ 2.2E-05 3.4E-05 6.8E-05 4.0E-03	Emissio Uncertainty (%) ±25 ±25 ±25 ±25 ±25	N ₂ O 5.9E-07 7.1E-07 1.5E-06 1.0E-04	Uncertainty \$ (%) -10 to +1000	Units tonnes/10° sef gas production tonnes/10° sef raw gas feed tonnes/10° bbl conventional oil production tonnes/10° bbl heavy oil

Studi Kasus VIII: perhitungan emisi pembakaran dari suar bakar (volume flare diketahui)

FORUM TEKNOLOGI

Sebuah fasilitas produksi migas memproduksi 3 juta scf/day gas alam.Pada tahun tersebut 20 juta scf gas lapangan dibakar di fasilitas tersebut. Komposisi gas suar bakar sbb: 12 mole% CO2, 2.1 mole% N2, 80 mole% CH4, 4.2 mole% C2H6, 1.3 mole% C3H8, and 0.4 mole% C4H10. Volume pada aliran gas yang dibakar termasuk volume aliran awal.


Karena hasil tes emisi tidak tersedia, emisi akan dihitung berdasar pendekatan efisiensi pembakaran sebesar 98% menjadi CO₂ dan sebesar 2% tetap menjadi CH₄.

Emisi CH₄, dimana 2% yang tidak terbakar tetap menjadi CH₄

$$\begin{split} E_{CH_4} &: \frac{20 \times 10^6 \text{ scf gas}}{\text{yr}} \times \frac{0.80 \text{ scf CH}_4}{\text{scf gas}} \times \frac{0.02 \text{ scf noncombusted CH}_4}{\text{scf CH}_4 \text{total}} \\ &\times \frac{\text{lbmole CH}_4}{379.3 \text{ scf CH}_4} \times \frac{16 \text{ lb CH}_4}{\text{lbmole CH}_4} \times \frac{\text{tonne}}{2204.62 \text{ lb}} \end{split}$$

 $E_{CH_4} = 6.1 \text{ tonnes CH}_4/\text{yr}$

CO2 yang dihasilkan berdasar asumsi 98% hidrokarbon akan terkonversi menjadi CO₂

 $E_{co.} = 1,095 \text{ tonnes CO}_2/\text{yr}$

DAFTAR PUSTAKA

API, Compendium of Green House Gas Emissions Methodologies for the Oil and Natural Gas Industry, 2009