Analisis Pengaruh Pemotongan Trayek Titik Didih Minyak Solar Terhadap Nilai Calculated Cetane Index (CCI)

Authors

  • Yusran Hedar PPSDM Migas

DOI:

https://doi.org/10.37525/mz/2022-2/402

Keywords:

Solar, Cetane Number, Calculated Cetane Index, Distilasi

Abstract

Kualitas penyalaan bahan bakar solar dinyatakan oleh cetane number (bilangan setana). Penentuan cetane number pada penelitian ini menggunakan korelasi empiris antara densitas dan suhu distilasi dengan standar Calculated Cetane Index (CCI) ASTM D 4737. Pemotongan trayek titik didih solar kilang dilakukan untuk mengetahui pengaruhnya terhadap nilai Calculated Cetane Index (CCI). Pemotongan trayek titik didih dilakukan dengan cara cutting distilasi menjadi 3 variasi. Calculated Cetane Index diukur dengan perhitungan antara data densitas ASTM D 4052 dan distilasi ASTM D 86. Solar Induk yang awalnya memiliki nilai CCI 46, dipotong fraksi beratnya secara bertingkat menjadi variasi 2, nilainya menurun hingga menjadi 41,6. Pada variasi 3, dilakukan pemotongan fraksi ringan secara bertingkat, hasilnya nilai CCI meningkat hingga 55,2. Hasil karakterisasi Fourier Transform Infrared Spectroscopy (FTIR) menunjukkan adanya gugus fungsi C-H stretching dan C-H bending pada bilangan gelombang 2900 cm-1 dan 1456 cm-1. Komposisi heksadekana yang semakin banyak ditemukan pada nilai CCI yang semakin tinggi. Hasil analisis menggunakan instrumen Gas Chromatography-Mass Spectrometry (GC-MS) membuktikan bahwa Solar 3.4 memiliki kandungan heksadekana yang paling tinggi yaitu sebesar 10,19%. Solar Induk memiliki kandungan heksadekana 6,45% sedangkan Solar 2.4 memiliki kandungan heksadekana yang paling rendah yaitu 4,56%.

References

Aitani, A. M. (2004). Oil refining and products. In Encyclopedia of energy (Vol. 4, pp. 715-729).

Barra, I., Kharbach, M., Bousrabat, M., Cherrah, Y., Hanafi, M., Qannari, E. M., & Bouklouze, A. (2020). Discrimination of diesel fuels marketed in Morocco using FTIR, GC-MS analysis, and chemometrics methods. Talanta, 209, 120543.

Barra, I., Mansouri, M. A., Cherrah, Y., Kharbach, M., & Bouklouze, A. (2019). FTIR fingerprints associated with a PLS-DA model for rapid detection of smuggled non-compliant diesel marketed in Morocco. Vibrational Spectroscopy, 101, 40-45.

Bezaire, N., Wadumesthrige, K., Ng, K. S., & Salley, S. O. (2010). Limitations of the use of cetane index for alternative compression ignition engine fuels. Fuel, 89(12), 3807-3813.

Bunting, B. G., Wildman, C. B., Szybist, J. P., Lewis, S., & Storey, J. (2007). Fuel chemistry and cetane effects on diesel homogeneous charge compression ignition performance, combustion, and emissions. International Journal of Engine Research, 8(1), 15-27.

Direktorat Jenderal Minyak dan Gas Bumi. (2016). Kepdirjen Migas No. 28 Thn 2016.pdf. Kementerian Energi dan Sumber Daya Manusia Republik Indonesia.

Drews, A. (2008a). Standard test method for calculated cetane index by four variable equation. Man Hydrocarb Anal, 1, 720-720.

Drews, A. (2008b). Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity). Man. Hydrocarb. Anal, 126-128. https://doi.org/10.1520/mnl10842m.

Freedman, B., & Bagby, M. O. (1990). Predicting cetane numbers of n‐alcohols and methyl esters from their physical properties. Journal of the American Oil Chemists' Society, 67(9), 565-571.

Giakoumis, E. G., Rakopoulos, C. D., Dimaratos, A. M., & Rakopoulos, D. C. (2012). Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progress in Energy and Combustion Science, 38(5), 691-715.

Giakoumis, E. G., & Sarakatsanis, C. K. (2019). A comparative assessment of biodiesel cetane number predictive correlations based on fatty acid composition. Energies, 12(3), 422.

Heywood, J. B. (1988). Internal combustion engine fundamentals. McGraw-Hill Education.

Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and sustainable energy reviews, 16(1), 143-169.

Ickes, A. M., Bohac, S. V., & Assanis, D. N. (2009). Effect of fuel cetane number on a premixed diesel combustion mode. International Journal of Engine Research, 10(4), 251-263.

Jääskeläinen, H. (2007). Fuel Property Testing: Ignition Quality. Diesel Net Technology Guide. Internet: https://www.dieselnet.com/tech/fuel_diesel_ignition.php.

Jean-Claude GUIBET. (2021). CÉTANE INDEX DE. Encyclopædia Universalis [online].

Kitano, K., Nishiumi, R., Tsukasaki, Y., Tanaka, T., & Morinaga, M. (2003). Effects of fuel properties on premixed charge compression ignition combustion in a direct injection diesel engine (No. 2003-01-1815). SAE Technical Paper.

Klopfenstein, W. E. (1982). Estimation of cetane index for esters of fatty acids. Journal of the American Oil Chemists' Society, 59(12), 531-533.

Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86(10), 1059-1070. https://doi.org/10.1016/j.fuproc.2004.11.002.

Knothe, G. (2014). A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. Fuel, 119, 6-13.

Lapuerta, M., Rodríguez-Fernández, J., & Armas, O. (2010). Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed biodiesel cetane index. Chemistry and physics of lipids, 163(7), 720-727.

Li, T., Okabe, Y., Izumi, H., Shudo, T., & Ogawa, H. (2006). Dependence of ultra-high EGR low-temperature diesel combustion on fuel properties (No. 2006-01-3387). SAE Technical Paper.

Lois, E., Keating, E. L., & Gupta, A. K. (2003). Fuels.

McCormick, R. L., Graboski, M. S., Alleman, T. L., Herring, A. M., & Tyson, K. S. (2001). Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environmental science & technology, 35(9), 1742-1747.

Mohammadi, S., & Najaf, B. (2015). Prediction of Cetane Number of biodiesel fuel from fatty acid ethyl ester (FAEE) composition. Indian J. Sci. Technol. https://doi.org/10.17485/ijst/2015/v8i35/78272.

Moser, B. R., Williams, A., Haas, M. J., & McCormick, R. L. (2009). Exhaust emissions and fuel properties of partially hydrogenated soybean oil methyl esters blended with ultra-low sulfur diesel fuel. Fuel Processing Technology, 90(9), 1122-1128.

Nasrun, N., Kurniawan, E., & Sari, I. (2017). Pengolahan Limbah Kantong Plastik Jenis Kresek Menjadi Bahan Bakar Menggunakan Proses Pirolisis. Jurnal Energi Elektrik, 4(1).

Pinzi, S., Leiva, D., Arzamendi, G., Gandia, L. M., & Dorado, M. P. (2011). Multiple response optimization of vegetable oils fatty acid composition to improve biodiesel physical properties. Bioresource technology, 102(15), 7280-7288.

Prak, D. L., Cooke, J., Dickerson, T., McDaniel, A., & Cowart, J. (2021). Cetane number, derived cetane number, and cetane index: When correlations fail to predict combustibility. Fuel, 289, 119963.

Ramírez-Verduzco, L. F., Rodríguez-Rodríguez, J. E., & del Rayo Jaramillo-Jacob, A. (2012). Predicting cetane number, kinematic viscosity, density, and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91(1), 102-111.

Rao, G. L. N., Ramadhas, A. S., Nallusamy, N., & Sakthivel, P. (2010). Relationships among the physical properties of biodiesel and engine fuel system design requirements. International journal of energy and environment, 1(5), 919-926.

Risberg, P., Kalghatgi, G., Ångstrom, H. E., & Wåhlin, F. (2005). Auto-ignition quality of diesel-like fuels in HCCI engines. SAE transactions, 883-893.

Sivaramakrishnan, K., & Ravikumar, P. (2012). Determination of the cetane number of biodiesel and its influence on physical properties. ARPN journal of engineering and applied sciences, 7(2), 205-211.

Standard, A. S. T. M. (2008). D613, Standard test method for cetane number of diesel fuel oil. ASTM International, West Conshohocken, PA.

Suppes, G. J., Chen, Z., Rui, Y., Mason, M., & Heppert, J. A. (1999). Synthesis and cetane improver performance of fatty acid glycol nitrates. Fuel, 78(1), 73-81.

Suryanarayanan, S., Janakiraman, V. M., Sekar, J., Lakshmi, G., & Rao, N. (2007, January). Prediction of cetane number of a biodiesel based on physical properties and a study of their influence on cetane number. In 2007 Fuels and Emissions Conference (No. 2007-01-0077).

Szybist, J. P., Boehman, A. L., Taylor, J. D., & McCormick, R. L. (2005). Evaluation of formulation strategies to eliminate the biodiesel NOx effect. Fuel Processing Technology, 86(10), 1109-1126.

Xing-Cai, L., Jian-Guang, Y., Wu-Gao, Z., & Zhen, H. (2004). Effect of cetane number improver on heat release rate and emissions of high-speed diesel engine fueled with ethanol–diesel blend fuel. Fuel, 83(14-15), 2013-2020.

Yang, C., Wang, Z. D., Hollebone, B. P., Peng, X., Fingas, M., & Landriault, M. (2006). GC/MS quantitation of diamondoid compounds in crude oils and petroleum products. Environmental Forensics, 7(4), 377-390.

Published

2022-11-30

How to Cite

Hedar, Y. (2022). Analisis Pengaruh Pemotongan Trayek Titik Didih Minyak Solar Terhadap Nilai Calculated Cetane Index (CCI). Jurnal Nasional Pengelolaan Energi MigasZoom, 4(2), 51–66. https://doi.org/10.37525/mz/2022-2/402