CUTTING EFFECT ANALYSIS Diesel Oil Boiling Point Route ON CALCULATED CETANE INDEX (CCI)

Authors

  • Yusran Hedar PPSDM Migas

DOI:

https://doi.org/10.37525/mz/2022-2/402

Abstract

The ignition quality of diesel fuel in diesel engines is expressed by the cetane number. In this study, the cetane number was determined using an empirical correlation between density and distillation temperature using the Calculated Cetane Index (CCI) ASTM D 4737 standard. Cutting the boiling point of refinery diesel is carried out to determine its effect on the Calculated Cetane Index (CCI) value. Cutting the boiling point route is done by cutting distillation into 3 variations. The Calculated Cetane Index is measured by calculating the density data of ASTM D 4052 and ASTM D 86 distillation. Solar Feed, which initially had a CCI value of 46, was cut by its heavy fraction in stages to variation 2, the value decreased to 41.6. In variation 3, the light fraction was cut in stages, the result showed that the CCI value increased to 55.2. The results of the Fourier Transform Infrared Spectroscopy (FTIR) characterization showed the presence of C-H stretching and C-H bending functional groups at wave numbers 2900 cm-1 and 1456 cm-1 The higher the hexadecane composition, the higher the CCI value. The results of the analysis using the Gas Chromatography-Mass Spectrometry (GC-MS) instrument proved that Solar 3.4 has the highest hexadecane composition of 10.19%. Solar Feed has a hexadecane composition of 6.45% while Solar 2.4 has the lowest hexadecane composition of 4.56%.

 

Keywords: Diesel Fuel, Cetane Number, Calculated Cetane Index, Distillation

References

Aitani, A. M. (2004). Oil refining and products. Encyclopedia of energy, 4, 715-729.

Barra, I., Kharbach, M., Bousrabat, M., Cherrah, Y., Hanafi, M., Qannari, E. M., & Bouklouze, A. (2020). Discrimination of diesel fuels marketed in Morocco using FTIR, GC-MS analysis and chemometrics methods. Talanta, 209, 120543.

Barra, I., Mansouri, M. A., Cherrah, Y., Kharbach, M., & Bouklouze, A. (2019). FTIR fingerprints associated to a PLS-DA model for rapid detection of smuggled non-compliant diesel marketed in Morocco. Vibrational Spectroscopy, 101, 40-45.

Bezaire, N., Wadumesthrige, K., Ng, K. S., & Salley, S. O. (2010). Limitations of the use of cetane index for alternative compression ignition engine fuels. Fuel, 89(12), 3807-3813.

Bunting, B. G., Wildman, C. B., Szybist, J. P., Lewis, S., & Storey, J. (2007). Fuel chemistry and cetane effects on diesel homogeneous charge compression ignition performance, combustion, and emissions. International Journal of Engine Research, 8(1), 15-27.

Direktorat Jenderal Minyak dan Gas Bumi, “Kepdirjen Migas No. 28 Thn 2016.pdf.” Kementerian Energi dan Sumber Daya Manusia Republik Indonesia, 2016.

Drews, A. (2008). Standard test method for calculated cetane index by four variable equation. Man Hydrocarb Anal, 1, 720-720.

Drews, A. (2008). Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity). Man. Hydrocarb. Anal, 126-128. https://doi.org/10.1520/mnl10842m.

Freedman, B., & Bagby, M. O. (1990). Predicting cetane numbers of n‐alcohols and methyl esters from their physical properties. Journal of the American Oil Chemists' Society, 67(9), 565-571.

Giakoumis, E. G., Rakopoulos, C. D., Dimaratos, A. M., & Rakopoulos, D. C. (2012). Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progress in Energy and Combustion Science, 38(5), 691-715.

Giakoumis, E. G., & Sarakatsanis, C. K. (2019). A comparative assessment of biodiesel cetane number predictive correlations based on fatty acid composition. Energies, 12(3), 422.

Heywood, J. B. (1988). Internal combustion engine fundamentals. McGraw-Hill Education.

Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and sustainable energy reviews, 16(1), 143-169.

Ickes, A. M., Bohac, S. V., & Assanis, D. N. (2009). Effect of fuel cetane number on a premixed diesel combustion mode. International Journal of Engine Research, 10(4), 251-263.

Jääskeläinen, H. (2007). Fuel Property Testing: Ignition Quality. Diesel Net Technology Guide. Internet: Guidhttps://www. dieselnet. com/tech/fuel_diesel_ignition. php.

Jean-Claude GUIBET. (2021). CÉTANE INDEX DE. Encyclopædia Universalis [online].

Kitano, K., Nishiumi, R., Tsukasaki, Y., Tanaka, T., & Morinaga, M. (2003). Effects of fuel properties on premixed charge compression ignition combustion in a direct injection diesel engine (No. 2003-01-1815). SAE Technical Paper.

Klopfenstein, W. E. (1982). Estimation of cetane index for esters of fatty acids. Journal of the American Oil Chemists' Society, 59(12), 531-533.

Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86(10), 1059-1070. https://doi.org/10.1016/j.fuproc.2004.11.002.

Knothe, G. (2014). A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. Fuel, 119, 6-13.

Lapuerta, M., Rodríguez-Fernández, J., & Armas, O. (2010). Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed biodiesel cetane index. Chemistry and physics of lipids, 163(7), 720-727.

Li, T., Okabe, Y., Izumi, H., Shudo, T., & Ogawa, H. (2006). Dependence of ultra-high EGR low temperature diesel combustion on fuel properties (No. 2006-01-3387). SAE Technical Paper.

Lois, E., Keating, E. L., & Gupta, A. K. (2003). Fuels.

McCormick, R. L., Graboski, M. S., Alleman, T. L., Herring, A. M., & Tyson, K. S. (2001). Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environmental science & technology, 35(9), 1742-1747.

Mohammadi, S., & Najaf, B. (2015). Prediction of Cetane Number of biodiesel fuel from fatty acid ethyl ester (FAEE) composition. Indian J. Sci. Technol.https://doi.org/10.17485/ijst/2015/v8i35/78272.

Moser, B. R., Williams, A., Haas, M. J., & McCormick, R. L. (2009). Exhaust emissions and fuel properties of partially hydrogenated soybean oil methyl esters blended with ultra low sulfur diesel fuel. Fuel Processing Technology, 90(9), 1122-1128.

Nasrun, N., Kurniawan, E., & Sari, I. (2017). Pengolahan Limbah Kantong Plastik Jenis Kresek Menjadi Bahan Bakar Menggunakan Proses Pirolisis. Jurnal Energi Elektrik, 4(1).

Pinzi, S., Leiva, D., Arzamendi, G., Gandia, L. M., & Dorado, M. P. (2011). Multiple response optimization of vegetable oils fatty acid composition to improve biodiesel physical properties. Bioresource technology, 102(15), 7280-7288.

Prak, D. L., Cooke, J., Dickerson, T., McDaniel, A., & Cowart, J. (2021). Cetane number, derived cetane number, and cetane index: When correlations fail to predict combustibility. Fuel, 289, 119963.

Ramírez-Verduzco, L. F., Rodríguez-Rodríguez, J. E., & del Rayo Jaramillo-Jacob, A. (2012). Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91(1), 102-111.

Rao, G. L. N., Ramadhas, A. S., Nallusamy, N., & Sakthivel, P. (2010). Relationships among the physical properties of biodiesel and engine fuel system design requirement. International journal of energy and environment, 1(5), 919-926.

Risberg, P., Kalghatgi, G., Ångstrom, H. E., & Wåhlin, F. (2005). Auto-ignition quality of diesel-like fuels in HCCI engines. SAE transactions, 883-893.

Sivaramakrishnan, K., & Ravikumar, P. (2012). Determination of cetane number of biodiesel and its influence on physical properties. ARPN journal of engineering and applied sciences, 7(2), 205-211.

Standard, A. S. T. M. (2008). D613, Standard test method for cetane number of diesel fuel oil. ASTM International, West Conshohocken, PA.

Suppes, G. J., Chen, Z., Rui, Y., Mason, M., & Heppert, J. A. (1999). Synthesis and cetane improver performance of fatty acid glycol nitrates. Fuel, 78(1), 73-81.

Suryanarayanan, S., Janakiraman, V. M., Sekar, J., Lakshmi, G., & Rao, N. (2007, January). Prediction of cetane number of a biodiesel based on physical properties and a study of their influence on cetane number. In 2007 Fuels and Emissions Conference (No. 2007-01-0077).

Szybist, J. P., Boehman, A. L., Taylor, J. D., & McCormick, R. L. (2005). Evaluation of formulation strategies to eliminate the biodiesel NOx effect. Fuel Processing Technology, 86(10), 1109-1126.

Xing-Cai, L., Jian-Guang, Y., Wu-Gao, Z., & Zhen, H. (2004). Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with ethanol–diesel blend fuel. Fuel, 83(14-15), 2013-2020.

Yang, C., Wang, Z. D., Hollebone, B. P., Peng, X., Fingas, M., & Landriault, M. (2006). GC/MS quantitation of diamondoid compounds in crude oils and petroleum products. Environmental Forensics, 7(4), 377-390.

Published

2022-11-30

How to Cite

Hedar, Y. (2022). CUTTING EFFECT ANALYSIS Diesel Oil Boiling Point Route ON CALCULATED CETANE INDEX (CCI). Jurnal Nasional Pengelolaan Energi MigasZoom, 4(2), 7–26. https://doi.org/10.37525/mz/2022-2/402